Cargando…
Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent
The utilization of dye adsorption through metal-organic frameworks represents an eco-friendly and highly effective approach in real water treatment. Here, ultrasound assisted adsorption approach was employed for the remediation of three dyes including methylene blue (MB), malachite green (MG), and c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679492/ https://www.ncbi.nlm.nih.gov/pubmed/38027594 http://dx.doi.org/10.1016/j.heliyon.2023.e22001 |
_version_ | 1785142164488978432 |
---|---|
author | Assafi, Abdeslam El Hadj Ali, Youssef Aoulad Almufarij, Rasmiah S. Hejji, Lamia Raza, Nadeem Villarejo, Luis Pérez Souhail, Badredine Azzouz, Abdelmonaim Abdelrahman, Ehab A. |
author_facet | Assafi, Abdeslam El Hadj Ali, Youssef Aoulad Almufarij, Rasmiah S. Hejji, Lamia Raza, Nadeem Villarejo, Luis Pérez Souhail, Badredine Azzouz, Abdelmonaim Abdelrahman, Ehab A. |
author_sort | Assafi, Abdeslam |
collection | PubMed |
description | The utilization of dye adsorption through metal-organic frameworks represents an eco-friendly and highly effective approach in real water treatment. Here, ultrasound assisted adsorption approach was employed for the remediation of three dyes including methylene blue (MB), malachite green (MG), and congo red (CR) from real water samples using zirconium(IV)-based adsorbent (UiO-66-NH(2)). The adsorbent was characterized for structural, elemental, thermal and morphological features through XRD, XPS, FTIR, thermogravimetric analysis, SEM, BET , and Raman spectroscopy. The adsorption capacity of adsorbent to uptake the pollutants in aqueous solutions was investigated under different experimental conditions such as amount of UiO-66-NH(2) at various contact durations, temperatures, pH levels, and initial dye loading amounts. The maximum removal of dyes under optimal conditions was found to be 938, 587, and 623 mg g(−1) towardMB, MG, and CR, respectively. The adsorption of the studied dyes on the adsorbent surface was found to be a monolayer and endothermic process. The probable mechanism for the adsorption was chemisorption and follows pseudo-second-order kinetics. From the findings of regeneration studies, it was deduced that the adsorbent can be effectively used for three consecutive cycles without any momentous loss in its adsorption efficacy. Furthermore, UiO-66-NH(2) with ultrasound-assisted adsorption might help to safeguard the environment and to develop new strategies for sustainability of natural resources. |
format | Online Article Text |
id | pubmed-10679492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106794922023-11-08 Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent Assafi, Abdeslam El Hadj Ali, Youssef Aoulad Almufarij, Rasmiah S. Hejji, Lamia Raza, Nadeem Villarejo, Luis Pérez Souhail, Badredine Azzouz, Abdelmonaim Abdelrahman, Ehab A. Heliyon Research Article The utilization of dye adsorption through metal-organic frameworks represents an eco-friendly and highly effective approach in real water treatment. Here, ultrasound assisted adsorption approach was employed for the remediation of three dyes including methylene blue (MB), malachite green (MG), and congo red (CR) from real water samples using zirconium(IV)-based adsorbent (UiO-66-NH(2)). The adsorbent was characterized for structural, elemental, thermal and morphological features through XRD, XPS, FTIR, thermogravimetric analysis, SEM, BET , and Raman spectroscopy. The adsorption capacity of adsorbent to uptake the pollutants in aqueous solutions was investigated under different experimental conditions such as amount of UiO-66-NH(2) at various contact durations, temperatures, pH levels, and initial dye loading amounts. The maximum removal of dyes under optimal conditions was found to be 938, 587, and 623 mg g(−1) towardMB, MG, and CR, respectively. The adsorption of the studied dyes on the adsorbent surface was found to be a monolayer and endothermic process. The probable mechanism for the adsorption was chemisorption and follows pseudo-second-order kinetics. From the findings of regeneration studies, it was deduced that the adsorbent can be effectively used for three consecutive cycles without any momentous loss in its adsorption efficacy. Furthermore, UiO-66-NH(2) with ultrasound-assisted adsorption might help to safeguard the environment and to develop new strategies for sustainability of natural resources. Elsevier 2023-11-08 /pmc/articles/PMC10679492/ /pubmed/38027594 http://dx.doi.org/10.1016/j.heliyon.2023.e22001 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Assafi, Abdeslam El Hadj Ali, Youssef Aoulad Almufarij, Rasmiah S. Hejji, Lamia Raza, Nadeem Villarejo, Luis Pérez Souhail, Badredine Azzouz, Abdelmonaim Abdelrahman, Ehab A. Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent |
title | Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent |
title_full | Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent |
title_fullStr | Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent |
title_full_unstemmed | Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent |
title_short | Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH(2) as an adsorbent |
title_sort | ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (iv)-based metal-organic frameworks uio-66-nh(2) as an adsorbent |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679492/ https://www.ncbi.nlm.nih.gov/pubmed/38027594 http://dx.doi.org/10.1016/j.heliyon.2023.e22001 |
work_keys_str_mv | AT assafiabdeslam ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT elhadjaliyoussefaoulad ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT almufarijrasmiahs ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT hejjilamia ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT razanadeem ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT villarejoluisperez ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT souhailbadredine ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT azzouzabdelmonaim ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent AT abdelrahmanehaba ultrasoundassistedadsorptionoforganicdyesinrealwatersamplesusingzirconiumivbasedmetalorganicframeworksuio66nh2asanadsorbent |