Cargando…
Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism
Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective h...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679537/ https://www.ncbi.nlm.nih.gov/pubmed/37802072 http://dx.doi.org/10.1016/j.stemcr.2023.09.002 |
_version_ | 1785142173085204480 |
---|---|
author | Loos, Malte Klampe, Birgit Schulze, Thomas Yin, Xiaoke Theofilatos, Konstantinos Ulmer, Bärbel Maria Schulz, Carl Behrens, Charlotta S. van Bergen, Tessa Diana Adami, Eleonora Maatz, Henrike Schweizer, Michaela Brodesser, Susanne Skryabin, Boris V. Rozhdestvensky, Timofey S. Bodbin, Sara Stathopoulou, Konstantina Christ, Torsten Denning, Chris Hübner, Norbert Mayr, Manuel Cuello, Friederike Eschenhagen, Thomas Hansen, Arne |
author_facet | Loos, Malte Klampe, Birgit Schulze, Thomas Yin, Xiaoke Theofilatos, Konstantinos Ulmer, Bärbel Maria Schulz, Carl Behrens, Charlotta S. van Bergen, Tessa Diana Adami, Eleonora Maatz, Henrike Schweizer, Michaela Brodesser, Susanne Skryabin, Boris V. Rozhdestvensky, Timofey S. Bodbin, Sara Stathopoulou, Konstantina Christ, Torsten Denning, Chris Hübner, Norbert Mayr, Manuel Cuello, Friederike Eschenhagen, Thomas Hansen, Arne |
author_sort | Loos, Malte |
collection | PubMed |
description | Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism. |
format | Online Article Text |
id | pubmed-10679537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106795372023-10-05 Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism Loos, Malte Klampe, Birgit Schulze, Thomas Yin, Xiaoke Theofilatos, Konstantinos Ulmer, Bärbel Maria Schulz, Carl Behrens, Charlotta S. van Bergen, Tessa Diana Adami, Eleonora Maatz, Henrike Schweizer, Michaela Brodesser, Susanne Skryabin, Boris V. Rozhdestvensky, Timofey S. Bodbin, Sara Stathopoulou, Konstantina Christ, Torsten Denning, Chris Hübner, Norbert Mayr, Manuel Cuello, Friederike Eschenhagen, Thomas Hansen, Arne Stem Cell Reports Article Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism. Elsevier 2023-10-05 /pmc/articles/PMC10679537/ /pubmed/37802072 http://dx.doi.org/10.1016/j.stemcr.2023.09.002 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Loos, Malte Klampe, Birgit Schulze, Thomas Yin, Xiaoke Theofilatos, Konstantinos Ulmer, Bärbel Maria Schulz, Carl Behrens, Charlotta S. van Bergen, Tessa Diana Adami, Eleonora Maatz, Henrike Schweizer, Michaela Brodesser, Susanne Skryabin, Boris V. Rozhdestvensky, Timofey S. Bodbin, Sara Stathopoulou, Konstantina Christ, Torsten Denning, Chris Hübner, Norbert Mayr, Manuel Cuello, Friederike Eschenhagen, Thomas Hansen, Arne Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
title | Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
title_full | Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
title_fullStr | Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
title_full_unstemmed | Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
title_short | Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
title_sort | human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679537/ https://www.ncbi.nlm.nih.gov/pubmed/37802072 http://dx.doi.org/10.1016/j.stemcr.2023.09.002 |
work_keys_str_mv | AT loosmalte humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT klampebirgit humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT schulzethomas humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT yinxiaoke humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT theofilatoskonstantinos humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT ulmerbarbelmaria humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT schulzcarl humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT behrenscharlottas humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT vanbergentessadiana humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT adamieleonora humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT maatzhenrike humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT schweizermichaela humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT brodessersusanne humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT skryabinborisv humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT rozhdestvenskytimofeys humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT bodbinsara humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT stathopouloukonstantina humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT christtorsten humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT denningchris humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT hubnernorbert humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT mayrmanuel humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT cuellofriederike humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT eschenhagenthomas humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism AT hansenarne humanmodelofprimarycarnitinedeficiencycardiomyopathyrevealsferroptosisasanovelmechanism |