Cargando…
Prediction of carcinogenic human papillomavirus types in cervical cancer from multiparametric magnetic resonance images with machine learning-based radiomics models
PURPOSE: This study aimed to evaluate the potential of machine learning-based models for predicting carcinogenic human papillomavirus (HPV) oncogene types using radiomics features from magnetic resonance imaging (MRI). METHODS: Pre-treatment MRI images of patients with cervical cancer were collected...
Autores principales: | İnce, Okan, Uysal, Emre, Durak, Görkem, Önol, Suzan, Dönmez Yılmaz, Binnur, Ertürk, Şükrü Mehmet, Önder, Hakan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679607/ https://www.ncbi.nlm.nih.gov/pubmed/36994859 http://dx.doi.org/10.4274/dir.2022.221335 |
Ejemplares similares
-
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2019) -
Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey
por: Volpe, Stefania, et al.
Publicado: (2023) -
Radiomics with 3-dimensional magnetic resonance fingerprinting: influence of dictionary design on repeatability and reproducibility of radiomic features
por: Fujita, Shohei, et al.
Publicado: (2022) -
Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative
por: Spadarella, Gaia, et al.
Publicado: (2022) -
Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
por: Schurink, Niels W., et al.
Publicado: (2023)