Cargando…
Improved breast lesion detection in mammogram images using a deep neural network
PURPOSE: This study aimed to investigate the effect of using a deep neural network (DNN) in breast cancer (BC) detection. METHODS: In this retrospective study, a DNN-based model was constructed from a total of 880 mammograms that 220 patients underwent between April and June 2020. The mammograms wer...
Autores principales: | Zhou, Wen, Zhang, Xiaodong, Ding, Jia, Deng, Lingbo, Cheng, Guanxun, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679640/ https://www.ncbi.nlm.nih.gov/pubmed/36994940 http://dx.doi.org/10.4274/dir.2022.22826 |
Ejemplares similares
-
Clinical Image Evaluation of Film Mammograms in Korea: Comparison with the ACR Standard
por: Gwak, Yeon Joo, et al.
Publicado: (2013) -
Primary breast osteosarcoma mimicking calcified fibroadenoma on screening digital breast tomosynthesis mammogram
por: Bennett, Debbie Lee, et al.
Publicado: (2017) -
Radiological review of prior screening mammograms of screen-detected breast cancer
por: Hovda, Tone, et al.
Publicado: (2020) -
Is There a Correlation between the Presence of a Spiculated Mass on Mammogram and Luminal A Subtype Breast Cancer?
por: Liu, Song, et al.
Publicado: (2016) -
Diagnostic Performance of Digital Breast Tomosynthesis with the Two-Dimensional Synthesized Mammogram for Suspicious Breast Microcalcifications Compared to Full-Field Digital Mammography in Stereotactic Breast Biopsy
Publicado: (2022)