Cargando…

A human in vitro neuronal model for studying homeostatic plasticity at the network level

Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human i...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Xiuming, Puvogel, Sofía, van Rhijn, Jon-Ruben, Ciptasari, Ummi, Esteve-Codina, Anna, Meijer, Mandy, Rouschop, Simon, van Hugte, Eline J.H., Oudakker, Astrid, Schoenmaker, Chantal, Frega, Monica, Schubert, Dirk, Franke, Barbara, Nadif Kasri, Nael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679660/
https://www.ncbi.nlm.nih.gov/pubmed/37863044
http://dx.doi.org/10.1016/j.stemcr.2023.09.011
_version_ 1785142208711622656
author Yuan, Xiuming
Puvogel, Sofía
van Rhijn, Jon-Ruben
Ciptasari, Ummi
Esteve-Codina, Anna
Meijer, Mandy
Rouschop, Simon
van Hugte, Eline J.H.
Oudakker, Astrid
Schoenmaker, Chantal
Frega, Monica
Schubert, Dirk
Franke, Barbara
Nadif Kasri, Nael
author_facet Yuan, Xiuming
Puvogel, Sofía
van Rhijn, Jon-Ruben
Ciptasari, Ummi
Esteve-Codina, Anna
Meijer, Mandy
Rouschop, Simon
van Hugte, Eline J.H.
Oudakker, Astrid
Schoenmaker, Chantal
Frega, Monica
Schubert, Dirk
Franke, Barbara
Nadif Kasri, Nael
author_sort Yuan, Xiuming
collection PubMed
description Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders.
format Online
Article
Text
id pubmed-10679660
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106796602023-10-19 A human in vitro neuronal model for studying homeostatic plasticity at the network level Yuan, Xiuming Puvogel, Sofía van Rhijn, Jon-Ruben Ciptasari, Ummi Esteve-Codina, Anna Meijer, Mandy Rouschop, Simon van Hugte, Eline J.H. Oudakker, Astrid Schoenmaker, Chantal Frega, Monica Schubert, Dirk Franke, Barbara Nadif Kasri, Nael Stem Cell Reports Article Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders. Elsevier 2023-10-19 /pmc/articles/PMC10679660/ /pubmed/37863044 http://dx.doi.org/10.1016/j.stemcr.2023.09.011 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Yuan, Xiuming
Puvogel, Sofía
van Rhijn, Jon-Ruben
Ciptasari, Ummi
Esteve-Codina, Anna
Meijer, Mandy
Rouschop, Simon
van Hugte, Eline J.H.
Oudakker, Astrid
Schoenmaker, Chantal
Frega, Monica
Schubert, Dirk
Franke, Barbara
Nadif Kasri, Nael
A human in vitro neuronal model for studying homeostatic plasticity at the network level
title A human in vitro neuronal model for studying homeostatic plasticity at the network level
title_full A human in vitro neuronal model for studying homeostatic plasticity at the network level
title_fullStr A human in vitro neuronal model for studying homeostatic plasticity at the network level
title_full_unstemmed A human in vitro neuronal model for studying homeostatic plasticity at the network level
title_short A human in vitro neuronal model for studying homeostatic plasticity at the network level
title_sort human in vitro neuronal model for studying homeostatic plasticity at the network level
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679660/
https://www.ncbi.nlm.nih.gov/pubmed/37863044
http://dx.doi.org/10.1016/j.stemcr.2023.09.011
work_keys_str_mv AT yuanxiuming ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT puvogelsofia ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT vanrhijnjonruben ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT ciptasariummi ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT estevecodinaanna ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT meijermandy ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT rouschopsimon ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT vanhugteelinejh ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT oudakkerastrid ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT schoenmakerchantal ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT fregamonica ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT schubertdirk ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT frankebarbara ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT nadifkasrinael ahumaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT yuanxiuming humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT puvogelsofia humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT vanrhijnjonruben humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT ciptasariummi humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT estevecodinaanna humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT meijermandy humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT rouschopsimon humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT vanhugteelinejh humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT oudakkerastrid humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT schoenmakerchantal humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT fregamonica humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT schubertdirk humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT frankebarbara humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel
AT nadifkasrinael humaninvitroneuronalmodelforstudyinghomeostaticplasticityatthenetworklevel