Cargando…
ERGPNet: lesion segmentation network for COVID-19 chest X-ray images based on embedded residual convolution and global perception
The Segmentation of infected areas from COVID-19 chest X-ray (CXR) images is of great significance for the diagnosis and treatment of patients. However, accurately and effectively segmenting infected areas of CXR images is still challenging due to the inherent ambiguity of CXR images and the cross-s...
Autores principales: | Yue, Gongtao, Yang, Chen, Zhao, Zhengyang, An, Ziheng, Yang, Yongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679680/ https://www.ncbi.nlm.nih.gov/pubmed/38028767 http://dx.doi.org/10.3389/fphys.2023.1296185 |
Ejemplares similares
-
Concordance of chest x-ray with chest CT by body mass index
por: Heston, Thomas F., et al.
Publicado: (2023) -
A Convolutional Neural Network Architecture for Segmentation of Lung Diseases Using Chest X-ray Images
por: Sulaiman, Adel, et al.
Publicado: (2023) -
COVID-19 detection from chest x-ray using MobileNet and residual separable convolution block
por: Tangudu, V. Santhosh Kumar, et al.
Publicado: (2022) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
To segment or not to segment: COVID-19 detection for chest X-rays()
por: Al Hajj Ibrahim, Sara, et al.
Publicado: (2023)