Cargando…
Prediction of malignancy upgrade rate in high-risk breast lesions using an artificial intelligence model: a retrospective study
PURPOSE: High-risk breast lesions (HRLs) are associated with future risk of breast cancer. Considering the pathological subtypes, malignancy upgrade rate differs according to each subtype and depends on various factors such as clinical and radiological features and biopsy method. Using artificial in...
Autores principales: | Aslan, Özge, Oktay, Ayşenur, Katuk, Başak, Erdur, Riza Cenk, Dikenelli, Oğuz, Yeniay, Levent, Zekioğlu, Osman, Özbek, Süha Süreyya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679697/ https://www.ncbi.nlm.nih.gov/pubmed/36987868 http://dx.doi.org/10.5152/dir.2022.211047 |
Ejemplares similares
-
Radiological and clinicopathological findings of breast cancer during the COVID-19 pandemic: a comparative study with the pre-pandemic era
por: Gürsoy, Merve, et al.
Publicado: (2023) -
Aberrant Breast in a Rare Site: A Case Report
por: Yeniay, Levent, et al.
Publicado: (2012) -
Can artificial intelligence reduce the interval cancer rate in mammography screening?
por: Lång, Kristina, et al.
Publicado: (2021) -
Identifying normal mammograms in a large screening population using artificial intelligence
por: Lång, Kristina, et al.
Publicado: (2020) -
Breast cancer screening with digital breast tomosynthesis: comparison of different reading strategies implementing artificial intelligence
por: Dahlblom, Victor, et al.
Publicado: (2022)