Cargando…

Radiomics analysis for predicting malignant cerebral edema in patients undergoing endovascular treatment for acute ischemic stroke

PURPOSE: Radiomics analysis is a promising image analysis technique. This study aims to extract a radiomics signature from baseline computed tomography (CT) to predict malignant cerebral edema (MCE) in patients with acute anterior circulation infarction after endovascular treatment (EVT). METHODS: I...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Xuehua, Hu, Xingfei, Xiao, Yanan, Chen, Junfa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Galenos Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679706/
https://www.ncbi.nlm.nih.gov/pubmed/36988060
http://dx.doi.org/10.4274/dir.2023.221764
Descripción
Sumario:PURPOSE: Radiomics analysis is a promising image analysis technique. This study aims to extract a radiomics signature from baseline computed tomography (CT) to predict malignant cerebral edema (MCE) in patients with acute anterior circulation infarction after endovascular treatment (EVT). METHODS: In this retrospective study, 111 patients underwent EVT for acute ischemic stroke caused by middle cerebral artery (MCA) and/or internal carotid artery occlusion. The participants were randomly divided into two datasets: the training set (n = 77) and the test set (n = 34). The clinico-radiological profiles of all patients were collected, including cranial non-contrast-enhanced CT, CT angiography, and CT perfusion. The MCA territory on non-contrast-enhanced CT images was segmented, and the radiomics features associated with MCE were analyzed. The clinico-radiological parameters related to MCE were also identified. In addition, a routine visual radiological model based on radiological factors and a combined model comprising radiomics features and clinico-radiological factors were constructed to predict MCE. RESULTS: The areas under the curve (AUCs) of the radiomics signature for predicting MCE were 0.870 (P < 0.001) and 0.837 (P = 0.002) in the training and test sets, respectively. The AUCs of the routine visual radiological model were 0.808 (P < 0.001) and 0.813 (P = 0.005) in the training and test sets, respectively. The AUCs of the model combining the radiomics signature and clinico-radiological factors were 0.924 (P < 0.001) and 0.879 (P = 0.001) in the training and test sets, respectively. CONCLUSION: A CT image-based radiomics signature is a promising tool for predicting MCE in patients with acute anterior circulation infarction after EVT. For clinicians, it may assist in diagnostic decision-making.