Cargando…

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

In recent years, nanostructures with hexagonal polytypes of gold have been synthesised, opening new possibilities in nanoscience and nanotechnology. As bulk gold crystallizes in the fcc phase, surface effects can play an important role in stabilizing hexagonal gold nanostructures. Here, we investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Sikora, Olga, Sternik, Małgorzata, Jany, Benedykt R, Krok, Franciszek, Piekarz, Przemysław, Oleś, Andrzej M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679839/
https://www.ncbi.nlm.nih.gov/pubmed/38025198
http://dx.doi.org/10.3762/bjnano.14.90
Descripción
Sumario:In recent years, nanostructures with hexagonal polytypes of gold have been synthesised, opening new possibilities in nanoscience and nanotechnology. As bulk gold crystallizes in the fcc phase, surface effects can play an important role in stabilizing hexagonal gold nanostructures. Here, we investigate several heterostructures with Ge substrates, including the fcc and hcp phases of gold that have been observed experimentally. We determine and discuss their interfacial energies and optimized atomic arrangements, comparing the theory results with available experimental data. Our DFT calculations for the Au-fcc(011)/Ge(001) junction show how the presence of defects in the interface layer can help to stabilize the atomic pattern, consistent with microscopic images. Although the Au-hcp/Ge interface is characterized by a similar interface energy, it reveals large atomic displacements due to significant mismatch. Finally, analyzing the electronic properties, we demonstrate that Au/Ge systems have metallic character, but covalent-like bonding states between interfacial Ge and Au atoms are also present.