Cargando…
Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review
BACKGROUND: Depression is one of the most significant health conditions in personal, social, and economic impact. The aim of this review is to summarize existing literature in which machine learning methods have been used in combination with Electronic Health Records for prediction of depression. ME...
Autores principales: | Nickson, David, Meyer, Caroline, Walasek, Lukasz, Toro, Carla |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680172/ https://www.ncbi.nlm.nih.gov/pubmed/38012655 http://dx.doi.org/10.1186/s12911-023-02341-x |
Ejemplares similares
-
Replicability and reproducibility of predictive models for diagnosis of depression among young adults using Electronic Health Records
por: Nickson, David, et al.
Publicado: (2023) -
Subphenotyping depression using machine learning and electronic health records
por: Xu, Zhenxing, et al.
Publicado: (2020) -
Postoperative delirium prediction using machine learning models and preoperative electronic health record data
por: Bishara, Andrew, et al.
Publicado: (2022) -
Predicting opioid dependence from electronic health records with machine learning
por: Ellis, Randall J., et al.
Publicado: (2019) -
Predicting outcomes of psychotherapy for depression with electronic health record data
por: Coley, R Yates, et al.
Publicado: (2021)