Cargando…
Predicting anticancer synergistic drug combinations based on multi-task learning
BACKGROUND: The discovery of anticancer drug combinations is a crucial work of anticancer treatment. In recent years, pre-screening drug combinations with synergistic effects in a large-scale search space adopting computational methods, especially deep learning methods, is increasingly popular with...
Autores principales: | Chen, Danyi, Wang, Xiaowen, Zhu, Hongming, Jiang, Yizhi, Li, Yulong, Liu, Qi, Liu, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680313/ https://www.ncbi.nlm.nih.gov/pubmed/38012551 http://dx.doi.org/10.1186/s12859-023-05524-5 |
Ejemplares similares
-
A complete graph-based approach with multi-task learning for predicting synergistic drug combinations
por: Wang, Xiaowen, et al.
Publicado: (2023) -
PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein–protein interaction network
por: Wang, Xiaowen, et al.
Publicado: (2022) -
Multi-task learning for predicting synergistic drug combinations based on auto-encoding multi-relational graphs
por: Shan, Wenyu, et al.
Publicado: (2023) -
Augmented drug combination dataset to improve the performance of machine learning models predicting synergistic anticancer effects
por: Liu, Mengmeng, et al.
Publicado: (2023) -
Searching Synergistic Dose Combinations for Anticancer Drugs
por: Yin, Zuojing, et al.
Publicado: (2018)