Cargando…
Cell Spotter (CSPOT): A machine-learning approach to automated cell spotting and quantification of highly multiplexed tissue images
Highly multiplexed tissue imaging and in situ spatial profiling aim to extract single-cell data from specimens containing closely packed cells of diverse morphology. This is challenging due to the difficulty of accurately assigning boundaries between cells (segmentation) and then generating per-cell...
Autores principales: | Nirmal, Ajit J., Yapp, Clarence, Santagata, Sandro, Sorger, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680730/ https://www.ncbi.nlm.nih.gov/pubmed/38014110 http://dx.doi.org/10.1101/2023.11.15.567196 |
Ejemplares similares
-
Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR
por: Muhlich, Jeremy L, et al.
Publicado: (2022) -
Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes
por: Lin, Jia-Ren, et al.
Publicado: (2018) -
Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer
por: Rashid, Rumana, et al.
Publicado: (2019) -
UnMICST: Deep learning with real augmentation for robust segmentation of highly multiplexed images of human tissues
por: Yapp, Clarence, et al.
Publicado: (2022) -
Multiplexed and reproducible high content screening of live and fixed cells using Dye Drop
por: Mills, Caitlin E., et al.
Publicado: (2022)