Cargando…

Deep learning assisted single particle tracking for automated correlation between diffusion and function

Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional inf...

Descripción completa

Detalles Bibliográficos
Autores principales: Kæstel-Hansen, Jacob, de Sautu, Marilina, Saminathan, Anand, Scanavachi, Gustavo, Da Cunha Correia, Ricardo F. Bango, Nielsen, Annette Juma, Bleshøy, Sara Vogt, Boomsma, Wouter, Kirchhausen, Tom, Hatzakis, Nikos S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680793/
https://www.ncbi.nlm.nih.gov/pubmed/38014323
http://dx.doi.org/10.1101/2023.11.16.567393
_version_ 1785150733890355200
author Kæstel-Hansen, Jacob
de Sautu, Marilina
Saminathan, Anand
Scanavachi, Gustavo
Da Cunha Correia, Ricardo F. Bango
Nielsen, Annette Juma
Bleshøy, Sara Vogt
Boomsma, Wouter
Kirchhausen, Tom
Hatzakis, Nikos S.
author_facet Kæstel-Hansen, Jacob
de Sautu, Marilina
Saminathan, Anand
Scanavachi, Gustavo
Da Cunha Correia, Ricardo F. Bango
Nielsen, Annette Juma
Bleshøy, Sara Vogt
Boomsma, Wouter
Kirchhausen, Tom
Hatzakis, Nikos S.
author_sort Kæstel-Hansen, Jacob
collection PubMed
description Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone indicates that besides structure, motion encodes function at the molecular and subcellular level.
format Online
Article
Text
id pubmed-10680793
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-106807932023-11-27 Deep learning assisted single particle tracking for automated correlation between diffusion and function Kæstel-Hansen, Jacob de Sautu, Marilina Saminathan, Anand Scanavachi, Gustavo Da Cunha Correia, Ricardo F. Bango Nielsen, Annette Juma Bleshøy, Sara Vogt Boomsma, Wouter Kirchhausen, Tom Hatzakis, Nikos S. bioRxiv Article Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone indicates that besides structure, motion encodes function at the molecular and subcellular level. Cold Spring Harbor Laboratory 2023-11-17 /pmc/articles/PMC10680793/ /pubmed/38014323 http://dx.doi.org/10.1101/2023.11.16.567393 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Kæstel-Hansen, Jacob
de Sautu, Marilina
Saminathan, Anand
Scanavachi, Gustavo
Da Cunha Correia, Ricardo F. Bango
Nielsen, Annette Juma
Bleshøy, Sara Vogt
Boomsma, Wouter
Kirchhausen, Tom
Hatzakis, Nikos S.
Deep learning assisted single particle tracking for automated correlation between diffusion and function
title Deep learning assisted single particle tracking for automated correlation between diffusion and function
title_full Deep learning assisted single particle tracking for automated correlation between diffusion and function
title_fullStr Deep learning assisted single particle tracking for automated correlation between diffusion and function
title_full_unstemmed Deep learning assisted single particle tracking for automated correlation between diffusion and function
title_short Deep learning assisted single particle tracking for automated correlation between diffusion and function
title_sort deep learning assisted single particle tracking for automated correlation between diffusion and function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680793/
https://www.ncbi.nlm.nih.gov/pubmed/38014323
http://dx.doi.org/10.1101/2023.11.16.567393
work_keys_str_mv AT kæstelhansenjacob deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT desautumarilina deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT saminathananand deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT scanavachigustavo deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT dacunhacorreiaricardofbango deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT nielsenannettejuma deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT bleshøysaravogt deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT boomsmawouter deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT kirchhausentom deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction
AT hatzakisnikoss deeplearningassistedsingleparticletrackingforautomatedcorrelationbetweendiffusionandfunction