Cargando…
A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome
Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have re-analysed publicly available mass spectrometry proteomics datasets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,522 phosphosi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680829/ https://www.ncbi.nlm.nih.gov/pubmed/38014076 http://dx.doi.org/10.1101/2023.11.17.567512 |
_version_ | 1785150736476143616 |
---|---|
author | Ramsbottom, Kerry A Prakash, Ananth Riverol, Yasset Perez Camacho, Oscar Martin Sun, Zhi Kundu, Deepti J. Bowler-Barnett, Emily Martin, Maria Fan, Jun Chebotarov, Dmytro McNally, Kenneth L Deutsch, Eric W Vizcaíno, Juan Antonio Jones, Andrew R |
author_facet | Ramsbottom, Kerry A Prakash, Ananth Riverol, Yasset Perez Camacho, Oscar Martin Sun, Zhi Kundu, Deepti J. Bowler-Barnett, Emily Martin, Maria Fan, Jun Chebotarov, Dmytro McNally, Kenneth L Deutsch, Eric W Vizcaíno, Juan Antonio Jones, Andrew R |
author_sort | Ramsbottom, Kerry A |
collection | PubMed |
description | Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have re-analysed publicly available mass spectrometry proteomics datasets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,522 phosphosites on serine, threonine and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety. The data was clustered to identify groups of sites with similar patterns across rice family groups, for example those highly conserved in Japonica, but mostly absent in Aus type rice varieties - known to have different responses to drought. These resources can assist rice researchers to discover alleles with significantly different functional effects across rice varieties. The data has been loaded into UniProt Knowledge-Base - enabling researchers to visualise sites alongside other data on rice proteins e.g. structural models from AlphaFold2, PeptideAtlas and the PRIDE database - enabling visualisation of source evidence, including scores and supporting mass spectra. |
format | Online Article Text |
id | pubmed-10680829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106808292023-11-27 A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome Ramsbottom, Kerry A Prakash, Ananth Riverol, Yasset Perez Camacho, Oscar Martin Sun, Zhi Kundu, Deepti J. Bowler-Barnett, Emily Martin, Maria Fan, Jun Chebotarov, Dmytro McNally, Kenneth L Deutsch, Eric W Vizcaíno, Juan Antonio Jones, Andrew R bioRxiv Article Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have re-analysed publicly available mass spectrometry proteomics datasets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,522 phosphosites on serine, threonine and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety. The data was clustered to identify groups of sites with similar patterns across rice family groups, for example those highly conserved in Japonica, but mostly absent in Aus type rice varieties - known to have different responses to drought. These resources can assist rice researchers to discover alleles with significantly different functional effects across rice varieties. The data has been loaded into UniProt Knowledge-Base - enabling researchers to visualise sites alongside other data on rice proteins e.g. structural models from AlphaFold2, PeptideAtlas and the PRIDE database - enabling visualisation of source evidence, including scores and supporting mass spectra. Cold Spring Harbor Laboratory 2023-11-17 /pmc/articles/PMC10680829/ /pubmed/38014076 http://dx.doi.org/10.1101/2023.11.17.567512 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Ramsbottom, Kerry A Prakash, Ananth Riverol, Yasset Perez Camacho, Oscar Martin Sun, Zhi Kundu, Deepti J. Bowler-Barnett, Emily Martin, Maria Fan, Jun Chebotarov, Dmytro McNally, Kenneth L Deutsch, Eric W Vizcaíno, Juan Antonio Jones, Andrew R A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
title | A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
title_full | A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
title_fullStr | A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
title_full_unstemmed | A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
title_short | A meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
title_sort | meta-analysis of rice phosphoproteomics data to understand variation in cell signalling across the rice pan-genome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680829/ https://www.ncbi.nlm.nih.gov/pubmed/38014076 http://dx.doi.org/10.1101/2023.11.17.567512 |
work_keys_str_mv | AT ramsbottomkerrya ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT prakashananth ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT riverolyassetperez ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT camachooscarmartin ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT sunzhi ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT kundudeeptij ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT bowlerbarnettemily ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT martinmaria ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT fanjun ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT chebotarovdmytro ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT mcnallykennethl ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT deutschericw ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT vizcainojuanantonio ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT jonesandrewr ametaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT ramsbottomkerrya metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT prakashananth metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT riverolyassetperez metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT camachooscarmartin metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT sunzhi metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT kundudeeptij metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT bowlerbarnettemily metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT martinmaria metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT fanjun metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT chebotarovdmytro metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT mcnallykennethl metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT deutschericw metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT vizcainojuanantonio metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome AT jonesandrewr metaanalysisofricephosphoproteomicsdatatounderstandvariationincellsignallingacrossthericepangenome |