Cargando…

Fast and accurate local ancestry inference with Recomb-Mix

The availability of large genotyped cohorts brings new opportunities for revealing high-resolution genetic structure of admixed populations, via local ancestry inference (LAI), the process of identifying the ancestry of each segment of an individual haplotype. Though current methods achieve high acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Yuan, Zhi, Degui, Zhang, Shaojie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680832/
https://www.ncbi.nlm.nih.gov/pubmed/38014185
http://dx.doi.org/10.1101/2023.11.17.567650
Descripción
Sumario:The availability of large genotyped cohorts brings new opportunities for revealing high-resolution genetic structure of admixed populations, via local ancestry inference (LAI), the process of identifying the ancestry of each segment of an individual haplotype. Though current methods achieve high accuracy in standard cases, LAI is still challenging when reference populations are more similar (e.g., intra-continental), when the number of reference populations is too numerous, or when the admixture events are deep in time, all of which are increasingly unavoidable in large biobanks. Here, we present a new LAI method, Recomb-Mix. Adopting the commonly used site-based formulation based on the classic Li and Stephens’ model, Recomb-Mix integrates the elements of existing methods and introduces a new graph collapsing to simplify counting paths with the same ancestry label readout. Through comprehensive benchmarking on various simulated datasets, we show that Recomb-Mix is more accurate than existing methods in diverse sets of scenarios while being competitive in terms of resource efficiency. We expect that Recomb-Mix will be a useful method for advancing genetics studies of admixed populations.