Cargando…
Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details
Three-dimensional virtual simulation of orthognathic surgery is now a well-established method in maxillo-facial surgery. The commercial software packages are still burdened by a consistent imprecision on soft tissue predictions. In this study, the authors produced an anatomically detailed patient sp...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681161/ https://www.ncbi.nlm.nih.gov/pubmed/38011187 http://dx.doi.org/10.1371/journal.pone.0294640 |
_version_ | 1785150758935592960 |
---|---|
author | Ruggiero, Federica Borghi, Alessandro Bevini, Mirko Badiali, Giovanni Lunari, Ottavia Dunaway, David Marchetti, Claudio |
author_facet | Ruggiero, Federica Borghi, Alessandro Bevini, Mirko Badiali, Giovanni Lunari, Ottavia Dunaway, David Marchetti, Claudio |
author_sort | Ruggiero, Federica |
collection | PubMed |
description | Three-dimensional virtual simulation of orthognathic surgery is now a well-established method in maxillo-facial surgery. The commercial software packages are still burdened by a consistent imprecision on soft tissue predictions. In this study, the authors produced an anatomically detailed patient specific numerical model for simulation of soft tissue changes in orthognathic surgery. Eight patients were prospectively enrolled. Each patient underwent CBCT and planar x-rays prior to surgery and in addition received an MRI scan. Postoperative soft-tissue change was simulated using Finite Element Modeling (FEM) relying on a patient-specific 3D models generated combining data from preoperative CBCT (hard tissue) scans and MRI scans (muscles and skin). An initial simulation was performed assuming that all the muscles and the other soft tissue had the same material properties (Homogeneous Model). This model was compared with the postoperative CBCT 3D simulation for validation purpose. Design of experiments (DoE) was used to assess the effect of the presence of the muscles considered and of their variation in stiffness. The effect of single muscles was evaluated in specific areas of the midface. The quantitative distance error between the homogeneous model and actual patient surfaces for the midface area was 0.55 mm, standard deviation 2.9 mm. In our experience, including muscles in the numerical simulation of orthognathic surgery, brought an improvement in the quality of the simulation obtained. |
format | Online Article Text |
id | pubmed-10681161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106811612023-11-27 Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details Ruggiero, Federica Borghi, Alessandro Bevini, Mirko Badiali, Giovanni Lunari, Ottavia Dunaway, David Marchetti, Claudio PLoS One Research Article Three-dimensional virtual simulation of orthognathic surgery is now a well-established method in maxillo-facial surgery. The commercial software packages are still burdened by a consistent imprecision on soft tissue predictions. In this study, the authors produced an anatomically detailed patient specific numerical model for simulation of soft tissue changes in orthognathic surgery. Eight patients were prospectively enrolled. Each patient underwent CBCT and planar x-rays prior to surgery and in addition received an MRI scan. Postoperative soft-tissue change was simulated using Finite Element Modeling (FEM) relying on a patient-specific 3D models generated combining data from preoperative CBCT (hard tissue) scans and MRI scans (muscles and skin). An initial simulation was performed assuming that all the muscles and the other soft tissue had the same material properties (Homogeneous Model). This model was compared with the postoperative CBCT 3D simulation for validation purpose. Design of experiments (DoE) was used to assess the effect of the presence of the muscles considered and of their variation in stiffness. The effect of single muscles was evaluated in specific areas of the midface. The quantitative distance error between the homogeneous model and actual patient surfaces for the midface area was 0.55 mm, standard deviation 2.9 mm. In our experience, including muscles in the numerical simulation of orthognathic surgery, brought an improvement in the quality of the simulation obtained. Public Library of Science 2023-11-27 /pmc/articles/PMC10681161/ /pubmed/38011187 http://dx.doi.org/10.1371/journal.pone.0294640 Text en © 2023 Ruggiero et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ruggiero, Federica Borghi, Alessandro Bevini, Mirko Badiali, Giovanni Lunari, Ottavia Dunaway, David Marchetti, Claudio Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details |
title | Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details |
title_full | Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details |
title_fullStr | Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details |
title_full_unstemmed | Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details |
title_short | Soft tissue prediction in orthognathic surgery: Improving accuracy by means of anatomical details |
title_sort | soft tissue prediction in orthognathic surgery: improving accuracy by means of anatomical details |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681161/ https://www.ncbi.nlm.nih.gov/pubmed/38011187 http://dx.doi.org/10.1371/journal.pone.0294640 |
work_keys_str_mv | AT ruggierofederica softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails AT borghialessandro softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails AT bevinimirko softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails AT badialigiovanni softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails AT lunariottavia softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails AT dunawaydavid softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails AT marchetticlaudio softtissuepredictioninorthognathicsurgeryimprovingaccuracybymeansofanatomicaldetails |