Cargando…
Combination of unsupervised discretization methods for credit risk
Creating robust and explainable statistical learning models is essential in credit risk management. For this purpose, equally spaced or frequent discretization is the de facto choice when building predictive models. The methods above have limitations, given that when the discretization procedure is...
Autores principales: | Fuentes Cabrera, José G., Pérez Vicente, Hugo A., Maldonado, Sebastián, Velasco, Jonás |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681304/ https://www.ncbi.nlm.nih.gov/pubmed/38011207 http://dx.doi.org/10.1371/journal.pone.0289130 |
Ejemplares similares
-
Credit risk valuation: methods, models, and applications
por: Ammann, Manuel
Publicado: (2001) -
Scalable Unsupervised Learning for Deep Discrete Generative Models
por: Guiraud, Enrico
Publicado: (2021) -
Credit Derivatives: A Primer on Credit Risk, Modeling, and Instruments
por: Chacko, George
Publicado: (2015) -
Credit derivatives: a primer on credit risk, modeling, and instruments
por: Chacko, George
Publicado: (2006) -
Credit Where Credit is Due
Publicado: (2009)