Cargando…
An evidence-based approach to artificial intelligence education for medical students: A systematic review
The exponential growth of artificial intelligence (AI) in the last two decades has been recognized by many as an opportunity to improve the quality of patient care. However, medical education systems have been slow to adapt to the age of AI, resulting in a paucity of AI-specific education in medical...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681314/ https://www.ncbi.nlm.nih.gov/pubmed/38011214 http://dx.doi.org/10.1371/journal.pdig.0000255 |
Sumario: | The exponential growth of artificial intelligence (AI) in the last two decades has been recognized by many as an opportunity to improve the quality of patient care. However, medical education systems have been slow to adapt to the age of AI, resulting in a paucity of AI-specific education in medical schools. The purpose of this systematic review is to evaluate the current evidence-based recommendations for the inclusion of an AI education curriculum in undergraduate medicine. Six databases were searched from inception to April 23, 2022 for cross sectional and cohort studies of fair quality or higher on the Newcastle-Ottawa scale, systematic, scoping, and integrative reviews, randomized controlled trials, and Delphi studies about AI education in undergraduate medical programs. The search yielded 991 results, of which 27 met all the criteria and seven more were included using reference mining. Despite the limitations of a high degree of heterogeneity among the study types and a lack of follow-up studies evaluating the impacts of current AI strategies, a thematic analysis of the key AI principles identified six themes needed for a successful implementation of AI in medical school curricula. These themes include ethics, theory and application, communication, collaboration, quality improvement, and perception and attitude. The themes of ethics, theory and application, and communication were further divided into subthemes, including patient-centric and data-centric ethics; knowledge for practice and knowledge for communication; and communication for clinical decision-making, communication for implementation, and communication for knowledge dissemination. Based on the survey studies, medical professionals and students, who generally have a low baseline knowledge of AI, have been strong supporters of adding formal AI education into medical curricula, suggesting more research needs to be done to push this agenda forward. |
---|