Cargando…
A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks
The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of...
Autores principales: | Jin, Shuting, Hong, Yue, Zeng, Li, Jiang, Yinghui, Lin, Yuan, Wei, Leyi, Yu, Zhuohang, Zeng, Xiangxiang, Liu, Xiangrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681315/ https://www.ncbi.nlm.nih.gov/pubmed/37956212 http://dx.doi.org/10.1371/journal.pcbi.1011597 |
Ejemplares similares
-
Multi-stakeholder News Recommendation Using Hypergraph Learning
por: Gharahighehi, Alireza, et al.
Publicado: (2020) -
Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
por: Guo, Jin-Li, et al.
Publicado: (2016) -
Explainable Deep Hypergraph Learning Modeling the Peptide Secondary Structure Prediction
por: Jiang, Yi, et al.
Publicado: (2023) -
Hypergraph Seminar
por: Berge, Claude, et al.
Publicado: (1974) -
Graphs and hypergraphs
por: Berge, Claude
Publicado: (1973)