Cargando…

A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer

The dose/exposure‐efficacy analyses are often conducted separately for oncology end points like best overall response, progression‐free survival (PFS) and overall survival (OS). Multistate models offer to bridge these dose‐end point relationships by describing transitions and transition times from e...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Han, Milenković‐Grišić, Ana‐Marija, Krishnan, Sreenath M., Jönsson, Siv, Friberg, Lena E., Girard, Pascal, Venkatakrishnan, Karthik, Vugmeyster, Yulia, Khandelwal, Akash, Karlsson, Mats O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681430/
https://www.ncbi.nlm.nih.gov/pubmed/37165943
http://dx.doi.org/10.1002/psp4.12976
_version_ 1785142529767768064
author Liu, Han
Milenković‐Grišić, Ana‐Marija
Krishnan, Sreenath M.
Jönsson, Siv
Friberg, Lena E.
Girard, Pascal
Venkatakrishnan, Karthik
Vugmeyster, Yulia
Khandelwal, Akash
Karlsson, Mats O.
author_facet Liu, Han
Milenković‐Grišić, Ana‐Marija
Krishnan, Sreenath M.
Jönsson, Siv
Friberg, Lena E.
Girard, Pascal
Venkatakrishnan, Karthik
Vugmeyster, Yulia
Khandelwal, Akash
Karlsson, Mats O.
author_sort Liu, Han
collection PubMed
description The dose/exposure‐efficacy analyses are often conducted separately for oncology end points like best overall response, progression‐free survival (PFS) and overall survival (OS). Multistate models offer to bridge these dose‐end point relationships by describing transitions and transition times from enrollment to response, progression, and death, and evaluating transition‐specific dose effects. This study aims to apply the multistate pharmacometric modeling and simulation framework in a dose optimization setting of bintrafusp alfa, a fusion protein targeting TGF‐β and PD‐L1. A multistate model with six states (stable disease [SD], response, progression, unknown, dropout, and death) was developed to describe the totality of endpoints data (time to response, PFS, and OS) of 80 patients with non‐small cell lung cancer receiving 500 or 1200 mg of bintrafusp alfa. Besides dose, evaluated predictor of transitions include time, demographics, premedication, disease factors, individual clearance derived from a pharmacokinetic model, and tumor dynamic metrics observed or derived from tumor size model. We found that probabilities of progression and death upon progression decreased over time since enrollment. Patients with metastasis at baseline had a higher probability to progress than patients without metastasis had. Despite dose failed to be statistically significant for any individual transition, the combined effect quantified through a model with dose‐specific transition estimates was still informative. Simulations predicted a 69.2% probability of at least 1 month longer, and, 55.6% probability of at least 2‐months longer median OS from the 1200 mg compared to the 500 mg dose, supporting the selection of 1200 mg for future studies.
format Online
Article
Text
id pubmed-10681430
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106814302023-05-11 A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer Liu, Han Milenković‐Grišić, Ana‐Marija Krishnan, Sreenath M. Jönsson, Siv Friberg, Lena E. Girard, Pascal Venkatakrishnan, Karthik Vugmeyster, Yulia Khandelwal, Akash Karlsson, Mats O. CPT Pharmacometrics Syst Pharmacol Research The dose/exposure‐efficacy analyses are often conducted separately for oncology end points like best overall response, progression‐free survival (PFS) and overall survival (OS). Multistate models offer to bridge these dose‐end point relationships by describing transitions and transition times from enrollment to response, progression, and death, and evaluating transition‐specific dose effects. This study aims to apply the multistate pharmacometric modeling and simulation framework in a dose optimization setting of bintrafusp alfa, a fusion protein targeting TGF‐β and PD‐L1. A multistate model with six states (stable disease [SD], response, progression, unknown, dropout, and death) was developed to describe the totality of endpoints data (time to response, PFS, and OS) of 80 patients with non‐small cell lung cancer receiving 500 or 1200 mg of bintrafusp alfa. Besides dose, evaluated predictor of transitions include time, demographics, premedication, disease factors, individual clearance derived from a pharmacokinetic model, and tumor dynamic metrics observed or derived from tumor size model. We found that probabilities of progression and death upon progression decreased over time since enrollment. Patients with metastasis at baseline had a higher probability to progress than patients without metastasis had. Despite dose failed to be statistically significant for any individual transition, the combined effect quantified through a model with dose‐specific transition estimates was still informative. Simulations predicted a 69.2% probability of at least 1 month longer, and, 55.6% probability of at least 2‐months longer median OS from the 1200 mg compared to the 500 mg dose, supporting the selection of 1200 mg for future studies. John Wiley and Sons Inc. 2023-05-11 /pmc/articles/PMC10681430/ /pubmed/37165943 http://dx.doi.org/10.1002/psp4.12976 Text en © 2023 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research
Liu, Han
Milenković‐Grišić, Ana‐Marija
Krishnan, Sreenath M.
Jönsson, Siv
Friberg, Lena E.
Girard, Pascal
Venkatakrishnan, Karthik
Vugmeyster, Yulia
Khandelwal, Akash
Karlsson, Mats O.
A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer
title A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer
title_full A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer
title_fullStr A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer
title_full_unstemmed A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer
title_short A multistate modeling and simulation framework to learn dose–response of oncology drugs: Application to bintrafusp alfa in non‐small cell lung cancer
title_sort multistate modeling and simulation framework to learn dose–response of oncology drugs: application to bintrafusp alfa in non‐small cell lung cancer
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681430/
https://www.ncbi.nlm.nih.gov/pubmed/37165943
http://dx.doi.org/10.1002/psp4.12976
work_keys_str_mv AT liuhan amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT milenkovicgrisicanamarija amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT krishnansreenathm amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT jonssonsiv amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT friberglenae amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT girardpascal amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT venkatakrishnankarthik amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT vugmeysteryulia amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT khandelwalakash amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT karlssonmatso amultistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT liuhan multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT milenkovicgrisicanamarija multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT krishnansreenathm multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT jonssonsiv multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT friberglenae multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT girardpascal multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT venkatakrishnankarthik multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT vugmeysteryulia multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT khandelwalakash multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer
AT karlssonmatso multistatemodelingandsimulationframeworktolearndoseresponseofoncologydrugsapplicationtobintrafuspalfainnonsmallcelllungcancer