Cargando…
BELB: a biomedical entity linking benchmark
MOTIVATION: Biomedical entity linking (BEL) is the task of grounding entity mentions to a knowledge base (KB). It plays a vital role in information extraction pipelines for the life sciences literature. We review recent work in the field and find that, as the task is absent from existing benchmarks...
Autores principales: | Garda, Samuele, Weber-Genzel, Leon, Martin, Robert, Leser, Ulf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681865/ https://www.ncbi.nlm.nih.gov/pubmed/37975879 http://dx.doi.org/10.1093/bioinformatics/btad698 |
Ejemplares similares
-
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Chemical–protein relation extraction with ensembles of carefully tuned pretrained language models
por: Weber, Leon, et al.
Publicado: (2022) -
HunFlair: an easy-to-use tool for state-of-the-art biomedical named entity recognition
por: Weber, Leon, et al.
Publicado: (2021) -
Entity linking for biomedical literature
por: Zheng, Jin G, et al.
Publicado: (2015) -
RegEl corpus: identifying DNA regulatory elements in the scientific literature
por: Garda, Samuele, et al.
Publicado: (2022)