Cargando…
Metal surface defect detection based on improved YOLOv5
During the production of metal material, various complex defects may come into being on the surface, together with large amount of background texture information, causing false or missing detection in the process of small defect detection. To resolve those problems, this paper introduces a new model...
Autores principales: | Zhou, Chuande, Lu, Zhenyu, Lv, Zhongliang, Meng, Minghui, Tan, Yonghu, Xia, Kewen, Liu, Kang, Zuo, Hailun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681978/ https://www.ncbi.nlm.nih.gov/pubmed/38012224 http://dx.doi.org/10.1038/s41598-023-47716-2 |
Ejemplares similares
-
Global contextual attention augmented YOLO with ConvMixer prediction heads for PCB surface defect detection
por: Xia, Kewen, et al.
Publicado: (2023) -
Mixed Receptive Fields Augmented YOLO with Multi-Path Spatial Pyramid Pooling for Steel Surface Defect Detection
por: Xia, Kewen, et al.
Publicado: (2023) -
Strip Surface Defect Detection Algorithm Based on YOLOv5
por: Wang, Han, et al.
Publicado: (2023) -
Defect Detection for Metal Shaft Surfaces Based on an Improved YOLOv5 Algorithm and Transfer Learning
por: Li, Bi, et al.
Publicado: (2023) -
Online Detection of Surface Defects Based on Improved YOLOV3
por: Chen, Xuechun, et al.
Publicado: (2022)