Cargando…

Antarctic daily mesoscale air temperature dataset derived from MODIS land and ice surface temperature

Knowledge about local air temperature variations and extremes in Antarctica is of large interest to many polar disciplines such as climatology, glaciology, hydrology, and ecology and it is a key variable to understand climate change. Due to the remote and harsh conditions of Antarctica’s environment...

Descripción completa

Detalles Bibliográficos
Autores principales: Nielsen, Eva Bendix, Katurji, Marwan, Zawar-Reza, Peyman, Meyer, Hanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681983/
https://www.ncbi.nlm.nih.gov/pubmed/38012190
http://dx.doi.org/10.1038/s41597-023-02720-z
Descripción
Sumario:Knowledge about local air temperature variations and extremes in Antarctica is of large interest to many polar disciplines such as climatology, glaciology, hydrology, and ecology and it is a key variable to understand climate change. Due to the remote and harsh conditions of Antarctica’s environment, the distribution of air temperature observations from Automatic Weather Stations is notably sparse across the region. Previous studies have shown that satellite-derived land and ice surface temperatures can be used as a suitable proxy for air temperature. Here, we developed a daily near-surface air temperature dataset, AntAir ICE for terrestrial Antarctica and the surrounding ice shelves by modelling air temperature from MODIS skin temperature for the period 2003 to 2021 using a linear model. AntAir ICE has a daily temporal resolution and a gridded spatial resolution of 1 km(2). AntAir ICE has a higher accuracy in reproducing in-situ measured air temperature when compared with the well-established climate re-analysis model ERA5 and a higher spatial resolution which highlights its potential for monitoring temperature patterns in Antarctica.