Cargando…
Detection and correction of patient motion in dynamic (15)O-water PET MPI
BACKGROUND: Patient motion constitutes a limitation to (15)O-water cardiac PET imaging. We examined the ability of image readers to detect and correct patient motion using simulated motion data and clinical patient scans. METHODS: Simulated data consisting of 16 motions applied to 10 motion-free sca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682105/ https://www.ncbi.nlm.nih.gov/pubmed/37639181 http://dx.doi.org/10.1007/s12350-023-03358-5 |
Sumario: | BACKGROUND: Patient motion constitutes a limitation to (15)O-water cardiac PET imaging. We examined the ability of image readers to detect and correct patient motion using simulated motion data and clinical patient scans. METHODS: Simulated data consisting of 16 motions applied to 10 motion-free scans were motion corrected using two approaches, pre-analysis and post-analysis for motion identification. Both approaches employed a manual frame-by-frame correction method. In addition, a clinical cohort was analyzed for assessment of prevalence and effect of motion and motion correction. RESULTS: Motion correction was performed on 94% (pre-analysis) and 64% (post-analysis) of the scans. Large motion artifacts were corrected in 91% (pre-analysis) and 74% (post-analysis) of scans. Artifacts in MBF were reduced in 56% (pre-analysis) and 58% (post-analysis) of the scans. The prevalence of motion in the clinical patient cohort (n = 762) was 10%. Motion correction altered exam interpretation in only 10 (1.3%) clinical patient exams. CONCLUSION: Frame-by-frame motion correction after visual inspection is useful in reducing motion artifacts in cardiac (15)O-water PET. Reviewing the initial results (parametric images and polar maps) as part of the motion correction process, reduced erroneous corrections in motion-free scans. In a large clinical cohort, the impact of motion correction was limited to few patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12350-023-03358-5. |
---|