Cargando…
Single-cell analysis reveals diversity of tumor-associated macrophages and their interactions with T lymphocytes in glioblastoma
Glioblastoma (GBM) is an aggressive primary CNS malignancy and clinical outcomes have remained stagnant despite introduction of new treatments. Understanding the tumor microenvironment (TME) in which tumor associated macrophages (TAMs) interact with T cells has been of great interest. Although previ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682178/ https://www.ncbi.nlm.nih.gov/pubmed/38012322 http://dx.doi.org/10.1038/s41598-023-48116-2 |
Sumario: | Glioblastoma (GBM) is an aggressive primary CNS malignancy and clinical outcomes have remained stagnant despite introduction of new treatments. Understanding the tumor microenvironment (TME) in which tumor associated macrophages (TAMs) interact with T cells has been of great interest. Although previous studies examining TAMs in GBM have shown that certain TAMs are associated with specific clinical and/or pathologic features, these studies used an outdated M1/M2 paradigm of macrophage polarization and failed to include the continuum of TAM states in GBM. Perhaps most significantly, the interactions of TAMs with T cells have yet to be fully explored. Our study uses single-cell RNA sequencing data from adult IDH-wildtype GBM, with the primary aim of deciphering the cellular interactions of the 7 TAM subtypes with T cells in the GBM TME. Furthermore, the interactions discovered herein are compared to IDH-mutant astrocytoma, allowing for focus on the cellular ecosystem unique to GBM. The resulting ligand-receptor interactions, signaling sources, and global communication patterns discovered provide a framework for future studies to explore methods of leveraging the immune system for treating GBM. |
---|