Cargando…
Pricing and cost-saving potential for deep-learning computer-aided lung nodule detection software in CT lung cancer screening
OBJECTIVE: An increasing number of commercial deep learning computer-aided detection (DL-CAD) systems are available but their cost-saving potential is largely unknown. This study aimed to gain insight into appropriate pricing for DL-CAD in different reading modes to be cost-saving and to determine t...
Autores principales: | Du, Yihui, Greuter, Marcel J. W., Prokop, Mathias W., de Bock, Geertruida H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682324/ https://www.ncbi.nlm.nih.gov/pubmed/38010436 http://dx.doi.org/10.1186/s13244-023-01561-z |
Ejemplares similares
-
Perifissural nodules: ready for application into lung cancer CT screening?
por: Schreuder, Anton, et al.
Publicado: (2020) -
CT-Detected Subsolid Nodules: A Predictor of Lung Cancer Development at Another Location?
por: Schreuder, Anton, et al.
Publicado: (2021) -
Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: accuracy of low and high risk spectrum when using NLST nodules
por: Chung, Kaman, et al.
Publicado: (2017) -
Supplementary data for a model-based health economic evaluation on lung cancer screening with low-dose computed tomography in a high-risk population
por: Du, Yihui, et al.
Publicado: (2020) -
Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT: an anthropomorphic phantom study
por: Xie, Xueqian, et al.
Publicado: (2012)