Cargando…
A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems
Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transf...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682335/ https://www.ncbi.nlm.nih.gov/pubmed/38010425 http://dx.doi.org/10.1007/s12200-023-00094-z |
Sumario: | Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C(6v)-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su–Schrieffer–Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12200-023-00094-z. |
---|