Cargando…
Application of machine learning models in the capacity prediction of RCFST columns
Rectangular concrete-filled steel tubular (RCFST) columns are widely used in structural engineering due to their excellent load-carrying capacity and ductility. However, existing design equations often yield different design results for the same column properties, leading to uncertainty for engineer...
Autores principales: | Megahed, Khaled, Mahmoud, Nabil Said, Abd-Rabou, Saad Elden Mostafa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682462/ https://www.ncbi.nlm.nih.gov/pubmed/38012229 http://dx.doi.org/10.1038/s41598-023-48044-1 |
Ejemplares similares
-
Predicting compressive strength of RCFST columns under different loading scenarios using machine learning optimization
por: Wu, Feng, et al.
Publicado: (2023) -
Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns
por: Cakiroglu, Celal, et al.
Publicado: (2022) -
Application of ensemble model in capacity prediction of the CCFST columns under axial and eccentric loading
por: Wang, Jing, et al.
Publicado: (2023) -
Prediction of the performance of pre‐packed purification columns through machine learning
por: Jiang, Qihao, et al.
Publicado: (2022) -
Prediction of Ultimate Capacity of Concrete Columns Reinforced with FRP Bars
por: Korentz, Jacek, et al.
Publicado: (2023)