Cargando…
Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment
Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their ex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682535/ https://www.ncbi.nlm.nih.gov/pubmed/38034809 http://dx.doi.org/10.1016/j.heliyon.2023.e21544 |
_version_ | 1785150996016529408 |
---|---|
author | Liu, Lin Tang, Haifeng Wang, Yanjun |
author_facet | Liu, Lin Tang, Haifeng Wang, Yanjun |
author_sort | Liu, Lin |
collection | PubMed |
description | Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy. |
format | Online Article Text |
id | pubmed-10682535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106825352023-11-30 Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment Liu, Lin Tang, Haifeng Wang, Yanjun Heliyon Review Article Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy. Elsevier 2023-11-01 /pmc/articles/PMC10682535/ /pubmed/38034809 http://dx.doi.org/10.1016/j.heliyon.2023.e21544 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Article Liu, Lin Tang, Haifeng Wang, Yanjun Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment |
title | Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment |
title_full | Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment |
title_fullStr | Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment |
title_full_unstemmed | Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment |
title_short | Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment |
title_sort | polymeric biomaterials: advanced drug delivery systems in osteoarthritis treatment |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682535/ https://www.ncbi.nlm.nih.gov/pubmed/38034809 http://dx.doi.org/10.1016/j.heliyon.2023.e21544 |
work_keys_str_mv | AT liulin polymericbiomaterialsadvanceddrugdeliverysystemsinosteoarthritistreatment AT tanghaifeng polymericbiomaterialsadvanceddrugdeliverysystemsinosteoarthritistreatment AT wangyanjun polymericbiomaterialsadvanceddrugdeliverysystemsinosteoarthritistreatment |