Cargando…
Explainability and human intervention in autonomous scanning probe microscopy
The broad adoption of machine learning (ML)-based autonomous experiments (AEs) in material characterization and synthesis requires strategies development for understanding and intervention in the experimental workflow. Here, we introduce and realize a post-experimental analysis strategy for deep ker...
Autores principales: | Liu, Yongtao, Ziatdinov, Maxim A., Vasudevan, Rama K., Kalinin, Sergei V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682748/ https://www.ncbi.nlm.nih.gov/pubmed/38035198 http://dx.doi.org/10.1016/j.patter.2023.100858 |
Ejemplares similares
-
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials
por: Liu, Yongtao, et al.
Publicado: (2023) -
Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy
por: Liu, Yongtao, et al.
Publicado: (2022) -
Physics Discovery in Nanoplasmonic Systems via Autonomous Experiments in Scanning Transmission Electron Microscopy
por: Roccapriore, Kevin M., et al.
Publicado: (2022) -
Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study
por: Ziatdinov, Maxim, et al.
Publicado: (2019) -
Computational scanning tunneling microscope image database
por: Choudhary, Kamal, et al.
Publicado: (2021)