Cargando…
MERGE: A model for multi-input biomedical federated learning
Driven by the deep learning (DL) revolution, artificial intelligence (AI) has become a fundamental tool for many biomedical tasks, including analyzing and classifying diagnostic images. Imaging, however, is not the only source of information. Tabular data, such as personal and genomic data and blood...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682752/ https://www.ncbi.nlm.nih.gov/pubmed/38035188 http://dx.doi.org/10.1016/j.patter.2023.100856 |
_version_ | 1785151042644606976 |
---|---|
author | Casella, Bruno Riviera, Walter Aldinucci, Marco Menegaz, Gloria |
author_facet | Casella, Bruno Riviera, Walter Aldinucci, Marco Menegaz, Gloria |
author_sort | Casella, Bruno |
collection | PubMed |
description | Driven by the deep learning (DL) revolution, artificial intelligence (AI) has become a fundamental tool for many biomedical tasks, including analyzing and classifying diagnostic images. Imaging, however, is not the only source of information. Tabular data, such as personal and genomic data and blood test results, are routinely collected but rarely considered in DL pipelines. Nevertheless, DL requires large datasets that often must be pooled from different institutions, raising non-trivial privacy concerns. Federated learning (FL) is a cooperative learning paradigm that aims to address these issues by moving models instead of data across different institutions. Here, we present a federated multi-input architecture using images and tabular data as a methodology to enhance model performance while preserving data privacy. We evaluated it on two showcases: the prognosis of COVID-19 and patients’ stratification in Alzheimer’s disease, providing evidence of enhanced accuracy and F1 scores against single-input models and improved generalizability against non-federated models. |
format | Online Article Text |
id | pubmed-10682752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106827522023-11-30 MERGE: A model for multi-input biomedical federated learning Casella, Bruno Riviera, Walter Aldinucci, Marco Menegaz, Gloria Patterns (N Y) Article Driven by the deep learning (DL) revolution, artificial intelligence (AI) has become a fundamental tool for many biomedical tasks, including analyzing and classifying diagnostic images. Imaging, however, is not the only source of information. Tabular data, such as personal and genomic data and blood test results, are routinely collected but rarely considered in DL pipelines. Nevertheless, DL requires large datasets that often must be pooled from different institutions, raising non-trivial privacy concerns. Federated learning (FL) is a cooperative learning paradigm that aims to address these issues by moving models instead of data across different institutions. Here, we present a federated multi-input architecture using images and tabular data as a methodology to enhance model performance while preserving data privacy. We evaluated it on two showcases: the prognosis of COVID-19 and patients’ stratification in Alzheimer’s disease, providing evidence of enhanced accuracy and F1 scores against single-input models and improved generalizability against non-federated models. Elsevier 2023-10-06 /pmc/articles/PMC10682752/ /pubmed/38035188 http://dx.doi.org/10.1016/j.patter.2023.100856 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Casella, Bruno Riviera, Walter Aldinucci, Marco Menegaz, Gloria MERGE: A model for multi-input biomedical federated learning |
title | MERGE: A model for multi-input biomedical federated learning |
title_full | MERGE: A model for multi-input biomedical federated learning |
title_fullStr | MERGE: A model for multi-input biomedical federated learning |
title_full_unstemmed | MERGE: A model for multi-input biomedical federated learning |
title_short | MERGE: A model for multi-input biomedical federated learning |
title_sort | merge: a model for multi-input biomedical federated learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682752/ https://www.ncbi.nlm.nih.gov/pubmed/38035188 http://dx.doi.org/10.1016/j.patter.2023.100856 |
work_keys_str_mv | AT casellabruno mergeamodelformultiinputbiomedicalfederatedlearning AT rivierawalter mergeamodelformultiinputbiomedicalfederatedlearning AT aldinuccimarco mergeamodelformultiinputbiomedicalfederatedlearning AT menegazgloria mergeamodelformultiinputbiomedicalfederatedlearning |