Cargando…
Optimal decision-making in high-throughput virtual screening pipelines
The need for efficient computational screening of molecular candidates that possess desired properties frequently arises in various scientific and engineering problems, including drug discovery and materials design. However, the enormous search space containing the candidates and the substantial com...
Autores principales: | Woo, Hyun-Myung, Qian, Xiaoning, Tan, Li, Jha, Shantenu, Alexander, Francis J., Dougherty, Edward R., Yoon, Byung-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682755/ https://www.ncbi.nlm.nih.gov/pubmed/38035191 http://dx.doi.org/10.1016/j.patter.2023.100875 |
Ejemplares similares
-
Optimal high-throughput virtual screening pipeline for efficient selection of redox-active organic materials
por: Woo, Hyun-Myung, et al.
Publicado: (2022) -
Protocol for condition-dependent metabolite yield prediction using the TRIMER pipeline
por: Niu, Puhua, et al.
Publicado: (2022) -
Robust importance sampling for error estimation in the context of optimal Bayesian transfer learning
por: Maddouri, Omar, et al.
Publicado: (2022) -
Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics
por: Ragothaman, Anjani, et al.
Publicado: (2014) -
Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
por: Qian, Xiaoning, et al.
Publicado: (2023)