Cargando…
Zero-shot personalization of speech foundation models for depressed mood monitoring
The monitoring of depressed mood plays an important role as a diagnostic tool in psychotherapy. An automated analysis of speech can provide a non-invasive measurement of a patient’s affective state. While speech has been shown to be a useful biomarker for depression, existing approaches mostly build...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682756/ https://www.ncbi.nlm.nih.gov/pubmed/38035199 http://dx.doi.org/10.1016/j.patter.2023.100873 |
_version_ | 1785151043619782656 |
---|---|
author | Gerczuk, Maurice Triantafyllopoulos, Andreas Amiriparian, Shahin Kathan, Alexander Bauer, Jonathan Berking, Matthias Schuller, Björn W. |
author_facet | Gerczuk, Maurice Triantafyllopoulos, Andreas Amiriparian, Shahin Kathan, Alexander Bauer, Jonathan Berking, Matthias Schuller, Björn W. |
author_sort | Gerczuk, Maurice |
collection | PubMed |
description | The monitoring of depressed mood plays an important role as a diagnostic tool in psychotherapy. An automated analysis of speech can provide a non-invasive measurement of a patient’s affective state. While speech has been shown to be a useful biomarker for depression, existing approaches mostly build population-level models that aim to predict each individual’s diagnosis as a (mostly) static property. Because of inter-individual differences in symptomatology and mood regulation behaviors, these approaches are ill-suited to detect smaller temporal variations in depressed mood. We address this issue by introducing a zero-shot personalization of large speech foundation models. Compared with other personalization strategies, our work does not require labeled speech samples for enrollment. Instead, the approach makes use of adapters conditioned on subject-specific metadata. On a longitudinal dataset, we show that the method improves performance compared with a set of suitable baselines. Finally, applying our personalization strategy improves individual-level fairness. |
format | Online Article Text |
id | pubmed-10682756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106827562023-11-30 Zero-shot personalization of speech foundation models for depressed mood monitoring Gerczuk, Maurice Triantafyllopoulos, Andreas Amiriparian, Shahin Kathan, Alexander Bauer, Jonathan Berking, Matthias Schuller, Björn W. Patterns (N Y) Article The monitoring of depressed mood plays an important role as a diagnostic tool in psychotherapy. An automated analysis of speech can provide a non-invasive measurement of a patient’s affective state. While speech has been shown to be a useful biomarker for depression, existing approaches mostly build population-level models that aim to predict each individual’s diagnosis as a (mostly) static property. Because of inter-individual differences in symptomatology and mood regulation behaviors, these approaches are ill-suited to detect smaller temporal variations in depressed mood. We address this issue by introducing a zero-shot personalization of large speech foundation models. Compared with other personalization strategies, our work does not require labeled speech samples for enrollment. Instead, the approach makes use of adapters conditioned on subject-specific metadata. On a longitudinal dataset, we show that the method improves performance compared with a set of suitable baselines. Finally, applying our personalization strategy improves individual-level fairness. Elsevier 2023-11-01 /pmc/articles/PMC10682756/ /pubmed/38035199 http://dx.doi.org/10.1016/j.patter.2023.100873 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gerczuk, Maurice Triantafyllopoulos, Andreas Amiriparian, Shahin Kathan, Alexander Bauer, Jonathan Berking, Matthias Schuller, Björn W. Zero-shot personalization of speech foundation models for depressed mood monitoring |
title | Zero-shot personalization of speech foundation models for depressed mood monitoring |
title_full | Zero-shot personalization of speech foundation models for depressed mood monitoring |
title_fullStr | Zero-shot personalization of speech foundation models for depressed mood monitoring |
title_full_unstemmed | Zero-shot personalization of speech foundation models for depressed mood monitoring |
title_short | Zero-shot personalization of speech foundation models for depressed mood monitoring |
title_sort | zero-shot personalization of speech foundation models for depressed mood monitoring |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682756/ https://www.ncbi.nlm.nih.gov/pubmed/38035199 http://dx.doi.org/10.1016/j.patter.2023.100873 |
work_keys_str_mv | AT gerczukmaurice zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring AT triantafyllopoulosandreas zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring AT amiriparianshahin zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring AT kathanalexander zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring AT bauerjonathan zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring AT berkingmatthias zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring AT schullerbjornw zeroshotpersonalizationofspeechfoundationmodelsfordepressedmoodmonitoring |