Cargando…
Reductive Cross-Coupling of Olefins via a Radical Pathway
[Image: see text] Olefins are widely available at low costs, which explains the usefulness of developing new methods for their functionalization. Here we report a simple protocol that uses a photoredox catalyst and an inexpensive thiol catalyst to stitch together two olefins, forming a new C–C bond....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682986/ https://www.ncbi.nlm.nih.gov/pubmed/37947488 http://dx.doi.org/10.1021/jacs.3c11285 |
Sumario: | [Image: see text] Olefins are widely available at low costs, which explains the usefulness of developing new methods for their functionalization. Here we report a simple protocol that uses a photoredox catalyst and an inexpensive thiol catalyst to stitch together two olefins, forming a new C–C bond. Specifically, an electron-poor olefin is reduced by the photoredox catalyst to generate, upon protonation, a carbon radical, which is then captured by a neutral olefin. This intermolecular cross-coupling process provides a tool for rapidly synthesizing sp(3)-dense molecules from olefins using an unconventional disconnection. |
---|