Cargando…
Automated Composition Assessment of Natural Extracts: Untargeted Mass Spectrometry-Based Metabolite Profiling Integrating Semiquantitative Detection
[Image: see text] Recent developments in mass spectrometry-based metabolite profiling allow unprecedented qualitative coverage of complex biological extract composition. However, the electrospray ionization used in metabolite profiling generates multiple artifactual signals for a single analyte. Thi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683005/ https://www.ncbi.nlm.nih.gov/pubmed/37949451 http://dx.doi.org/10.1021/acs.jafc.3c03099 |
Sumario: | [Image: see text] Recent developments in mass spectrometry-based metabolite profiling allow unprecedented qualitative coverage of complex biological extract composition. However, the electrospray ionization used in metabolite profiling generates multiple artifactual signals for a single analyte. This leads to thousands of signals per analysis without satisfactory means of filtering those corresponding to abundant constituents. Generic approaches are therefore needed for the qualitative and quantitative annotation of a broad range of relevant constituents. For this, we used an analytical platform combining liquid chromatography–mass spectrometry (LC–MS) with Charged Aerosol Detection (CAD). We established a generic metabolite profiling for the concomitant recording of qualitative MS data and semiquantitative CAD profiles. The MS features (recorded in high-resolution tandem MS) are grouped and annotated using state-of-the-art tools. To efficiently attribute features to their corresponding extracted and integrated CAD peaks, a custom signal pretreatment and peak-shape comparison workflow is built. This strategy allows us to automatically contextualize features at both major and minor metabolome levels, together with a detailed reporting of their annotation including relevant orthogonal information (taxonomy, retention time). Signals not attributed to CAD peaks are considered minor metabolites. Results are illustrated on an ethanolic extract of Swertia chirayita (Roxb.) H. Karst., a bitter plant of industrial interest, exhibiting the typical complexity of plant extracts as a proof of concept. This generic qualitative and quantitative approach paves the way to automatically assess the composition of single natural extracts of interest or broader collections, thus facilitating new ingredient registrations or natural-extracts-based drug discovery campaigns. |
---|