Cargando…
Fully automated coronary artery calcium quantification on electrocardiogram-gated non-contrast cardiac computed tomography using deep-learning with novel Heart-labelling method
AIMS: To develop an artificial intelligence (AI)-model which enables fully automated accurate quantification of coronary artery calcium (CAC), using deep learning (DL) on electrocardiogram (ECG)-gated non-contrast cardiac computed tomography (gated CCT) images. METHODS AND RESULTS: Retrospectively,...
Autores principales: | Takahashi, Daigo, Fujimoto, Shinichiro, Nozaki, Yui O, Kudo, Ayako, Kawaguchi, Yuko O, Takamura, Kazuhisa, Hiki, Makoto, Sato, Eisuke, Tomizawa, Nobuo, Daida, Hiroyuki, Minamino, Tohru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683040/ https://www.ncbi.nlm.nih.gov/pubmed/38035036 http://dx.doi.org/10.1093/ehjopen/oead113 |
Ejemplares similares
-
A study on the prevalence, distribution and related factors of heart valve calcification using coronary CT angiography()
por: Kamo, Yuki, et al.
Publicado: (2020) -
Use of a deep-learning-based lumen extraction method to detect significant stenosis on coronary computed tomography angiography in patients with severe coronary calcification
por: Inage, Hidekazu, et al.
Publicado: (2022) -
Incremental Diagnostic Value of CT Fractional Flow Reserve Using Subtraction Method in Patients with Severe Calcification: A Pilot Study
por: Kamo, Yuki, et al.
Publicado: (2021) -
Comparison of diagnostic performance in on-site based CT-derived fractional flow reserve measurements
por: Nozaki, Yui O., et al.
Publicado: (2021) -
Identification of Risk Factors for Coronary Artery Disease in Asymptomatic Patients with Type 2 Diabetes Mellitus
por: Takamura, Kazuhisa, et al.
Publicado: (2022)