Cargando…

Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries

Searching for electrode materials with good electrical conductivity, fast charge/discharge rates and high storage capacity is essential for the development of high-performance metal ion batteries. Here, by performing first principles calculations, we have explored the feasibility of using two dimens...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Tianze, Yang, Youchao, Liu, Tianyang, Jing, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683046/
https://www.ncbi.nlm.nih.gov/pubmed/38035235
http://dx.doi.org/10.1039/d3ra07655e
_version_ 1785151105439629312
author Xu, Tianze
Yang, Youchao
Liu, Tianyang
Jing, Yu
author_facet Xu, Tianze
Yang, Youchao
Liu, Tianyang
Jing, Yu
author_sort Xu, Tianze
collection PubMed
description Searching for electrode materials with good electrical conductivity, fast charge/discharge rates and high storage capacity is essential for the development of high-performance metal ion batteries. Here, by performing first principles calculations, we have explored the feasibility of using two dimensional (2D) covalent organic frameworks (COFs) constructed by tri-quinazoline, triquinoxalinylene and benzoquinone, and tribenzoquinoxaline-5,10-dione and benzoquinone (BQ2), as electrode materials for lithium and sodium ion batteries. All the designed 2D COFs show good structure stability and are semiconductors with a band gap of 1.63–2.93 eV because of the high electron conjugation of the skeletons. The pyrazine N and carbonyl groups are revealed to be the active sites to combine Li/Na, while the Li-/Na-binding strength can be highly enhanced when the pyrazine N and the carbonyl group are located in adjacent sites. The designed 2D COFs show a low Li and Na diffusion barrier in the range of 0.28–0.56 eV to guarantee high rate performance for LIBs/SIBs. With abundant redox active sites, 2D BQ2-COF shows a high theoretical capacity of 1030 mA h g(−1) with an average open circuit voltage of 0.80 and 0.67 V for LIBs and SIBs, respectively, which is comparable to that of the most advanced inorganic anode materials. Composed of only light elements, the designed 2D COFs are predicted to be promising anode materials with high energy density, good conductivity and high-rate performance for sustainable LIBs and SIBs.
format Online
Article
Text
id pubmed-10683046
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-106830462023-11-30 Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries Xu, Tianze Yang, Youchao Liu, Tianyang Jing, Yu RSC Adv Chemistry Searching for electrode materials with good electrical conductivity, fast charge/discharge rates and high storage capacity is essential for the development of high-performance metal ion batteries. Here, by performing first principles calculations, we have explored the feasibility of using two dimensional (2D) covalent organic frameworks (COFs) constructed by tri-quinazoline, triquinoxalinylene and benzoquinone, and tribenzoquinoxaline-5,10-dione and benzoquinone (BQ2), as electrode materials for lithium and sodium ion batteries. All the designed 2D COFs show good structure stability and are semiconductors with a band gap of 1.63–2.93 eV because of the high electron conjugation of the skeletons. The pyrazine N and carbonyl groups are revealed to be the active sites to combine Li/Na, while the Li-/Na-binding strength can be highly enhanced when the pyrazine N and the carbonyl group are located in adjacent sites. The designed 2D COFs show a low Li and Na diffusion barrier in the range of 0.28–0.56 eV to guarantee high rate performance for LIBs/SIBs. With abundant redox active sites, 2D BQ2-COF shows a high theoretical capacity of 1030 mA h g(−1) with an average open circuit voltage of 0.80 and 0.67 V for LIBs and SIBs, respectively, which is comparable to that of the most advanced inorganic anode materials. Composed of only light elements, the designed 2D COFs are predicted to be promising anode materials with high energy density, good conductivity and high-rate performance for sustainable LIBs and SIBs. The Royal Society of Chemistry 2023-11-28 /pmc/articles/PMC10683046/ /pubmed/38035235 http://dx.doi.org/10.1039/d3ra07655e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Xu, Tianze
Yang, Youchao
Liu, Tianyang
Jing, Yu
Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
title Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
title_full Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
title_fullStr Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
title_full_unstemmed Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
title_short Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
title_sort two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683046/
https://www.ncbi.nlm.nih.gov/pubmed/38035235
http://dx.doi.org/10.1039/d3ra07655e
work_keys_str_mv AT xutianze twodimensionalcovalentorganicframeworksmadeoftriquinoxalinylenederivativesarepromisinganodesforhighperformancelithiumandsodiumionbatteries
AT yangyouchao twodimensionalcovalentorganicframeworksmadeoftriquinoxalinylenederivativesarepromisinganodesforhighperformancelithiumandsodiumionbatteries
AT liutianyang twodimensionalcovalentorganicframeworksmadeoftriquinoxalinylenederivativesarepromisinganodesforhighperformancelithiumandsodiumionbatteries
AT jingyu twodimensionalcovalentorganicframeworksmadeoftriquinoxalinylenederivativesarepromisinganodesforhighperformancelithiumandsodiumionbatteries