Cargando…
A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states t...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683105/ https://www.ncbi.nlm.nih.gov/pubmed/38017371 http://dx.doi.org/10.1186/s12864-023-09722-6 |
_version_ | 1785151118682095616 |
---|---|
author | Dezem, Felipe Segato Marção, Maycon Ben-Cheikh, Bassem Nikulina, Nadya Omotoso, Ayodele Burnett, Destiny Coelho, Priscila Hurley, Judith Gomez, Carmen Phan-Everson, Tien Ong, Giang Martelotto, Luciano Lewis, Zachary R. George, Sophia Braubach, Oliver Malta, Tathiane M. Plummer, Jasmine |
author_facet | Dezem, Felipe Segato Marção, Maycon Ben-Cheikh, Bassem Nikulina, Nadya Omotoso, Ayodele Burnett, Destiny Coelho, Priscila Hurley, Judith Gomez, Carmen Phan-Everson, Tien Ong, Giang Martelotto, Luciano Lewis, Zachary R. George, Sophia Braubach, Oliver Malta, Tathiane M. Plummer, Jasmine |
author_sort | Dezem, Felipe Segato |
collection | PubMed |
description | Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09722-6. |
format | Online Article Text |
id | pubmed-10683105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-106831052023-11-30 A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics Dezem, Felipe Segato Marção, Maycon Ben-Cheikh, Bassem Nikulina, Nadya Omotoso, Ayodele Burnett, Destiny Coelho, Priscila Hurley, Judith Gomez, Carmen Phan-Everson, Tien Ong, Giang Martelotto, Luciano Lewis, Zachary R. George, Sophia Braubach, Oliver Malta, Tathiane M. Plummer, Jasmine BMC Genomics Research Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09722-6. BioMed Central 2023-11-28 /pmc/articles/PMC10683105/ /pubmed/38017371 http://dx.doi.org/10.1186/s12864-023-09722-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Dezem, Felipe Segato Marção, Maycon Ben-Cheikh, Bassem Nikulina, Nadya Omotoso, Ayodele Burnett, Destiny Coelho, Priscila Hurley, Judith Gomez, Carmen Phan-Everson, Tien Ong, Giang Martelotto, Luciano Lewis, Zachary R. George, Sophia Braubach, Oliver Malta, Tathiane M. Plummer, Jasmine A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
title | A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
title_full | A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
title_fullStr | A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
title_full_unstemmed | A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
title_short | A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
title_sort | machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683105/ https://www.ncbi.nlm.nih.gov/pubmed/38017371 http://dx.doi.org/10.1186/s12864-023-09722-6 |
work_keys_str_mv | AT dezemfelipesegato amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT marcaomaycon amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT bencheikhbassem amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT nikulinanadya amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT omotosoayodele amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT burnettdestiny amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT coelhopriscila amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT hurleyjudith amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT gomezcarmen amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT phaneversontien amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT onggiang amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT martelottoluciano amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT lewiszacharyr amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT georgesophia amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT braubacholiver amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT maltatathianem amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT plummerjasmine amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT dezemfelipesegato machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT marcaomaycon machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT bencheikhbassem machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT nikulinanadya machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT omotosoayodele machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT burnettdestiny machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT coelhopriscila machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT hurleyjudith machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT gomezcarmen machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT phaneversontien machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT onggiang machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT martelottoluciano machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT lewiszacharyr machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT georgesophia machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT braubacholiver machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT maltatathianem machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics AT plummerjasmine machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics |