Cargando…

A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics

Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dezem, Felipe Segato, Marção, Maycon, Ben-Cheikh, Bassem, Nikulina, Nadya, Omotoso, Ayodele, Burnett, Destiny, Coelho, Priscila, Hurley, Judith, Gomez, Carmen, Phan-Everson, Tien, Ong, Giang, Martelotto, Luciano, Lewis, Zachary R., George, Sophia, Braubach, Oliver, Malta, Tathiane M., Plummer, Jasmine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683105/
https://www.ncbi.nlm.nih.gov/pubmed/38017371
http://dx.doi.org/10.1186/s12864-023-09722-6
_version_ 1785151118682095616
author Dezem, Felipe Segato
Marção, Maycon
Ben-Cheikh, Bassem
Nikulina, Nadya
Omotoso, Ayodele
Burnett, Destiny
Coelho, Priscila
Hurley, Judith
Gomez, Carmen
Phan-Everson, Tien
Ong, Giang
Martelotto, Luciano
Lewis, Zachary R.
George, Sophia
Braubach, Oliver
Malta, Tathiane M.
Plummer, Jasmine
author_facet Dezem, Felipe Segato
Marção, Maycon
Ben-Cheikh, Bassem
Nikulina, Nadya
Omotoso, Ayodele
Burnett, Destiny
Coelho, Priscila
Hurley, Judith
Gomez, Carmen
Phan-Everson, Tien
Ong, Giang
Martelotto, Luciano
Lewis, Zachary R.
George, Sophia
Braubach, Oliver
Malta, Tathiane M.
Plummer, Jasmine
author_sort Dezem, Felipe Segato
collection PubMed
description Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09722-6.
format Online
Article
Text
id pubmed-10683105
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-106831052023-11-30 A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics Dezem, Felipe Segato Marção, Maycon Ben-Cheikh, Bassem Nikulina, Nadya Omotoso, Ayodele Burnett, Destiny Coelho, Priscila Hurley, Judith Gomez, Carmen Phan-Everson, Tien Ong, Giang Martelotto, Luciano Lewis, Zachary R. George, Sophia Braubach, Oliver Malta, Tathiane M. Plummer, Jasmine BMC Genomics Research Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09722-6. BioMed Central 2023-11-28 /pmc/articles/PMC10683105/ /pubmed/38017371 http://dx.doi.org/10.1186/s12864-023-09722-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Dezem, Felipe Segato
Marção, Maycon
Ben-Cheikh, Bassem
Nikulina, Nadya
Omotoso, Ayodele
Burnett, Destiny
Coelho, Priscila
Hurley, Judith
Gomez, Carmen
Phan-Everson, Tien
Ong, Giang
Martelotto, Luciano
Lewis, Zachary R.
George, Sophia
Braubach, Oliver
Malta, Tathiane M.
Plummer, Jasmine
A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
title A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
title_full A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
title_fullStr A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
title_full_unstemmed A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
title_short A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
title_sort machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683105/
https://www.ncbi.nlm.nih.gov/pubmed/38017371
http://dx.doi.org/10.1186/s12864-023-09722-6
work_keys_str_mv AT dezemfelipesegato amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT marcaomaycon amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT bencheikhbassem amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT nikulinanadya amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT omotosoayodele amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT burnettdestiny amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT coelhopriscila amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT hurleyjudith amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT gomezcarmen amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT phaneversontien amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT onggiang amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT martelottoluciano amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT lewiszacharyr amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT georgesophia amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT braubacholiver amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT maltatathianem amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT plummerjasmine amachinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT dezemfelipesegato machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT marcaomaycon machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT bencheikhbassem machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT nikulinanadya machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT omotosoayodele machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT burnettdestiny machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT coelhopriscila machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT hurleyjudith machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT gomezcarmen machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT phaneversontien machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT onggiang machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT martelottoluciano machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT lewiszacharyr machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT georgesophia machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT braubacholiver machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT maltatathianem machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics
AT plummerjasmine machinelearningoneclasslogisticregressionmodeltopredictstemnessforsinglecelltranscriptomicsandspatialomics