Cargando…
Should AI allocate livers for transplant? Public attitudes and ethical considerations
BACKGROUND: Allocation of scarce organs for transplantation is ethically challenging. Artificial intelligence (AI) has been proposed to assist in liver allocation, however the ethics of this remains unexplored and the view of the public unknown. The aim of this paper was to assess public attitudes o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683249/ https://www.ncbi.nlm.nih.gov/pubmed/38012660 http://dx.doi.org/10.1186/s12910-023-00983-0 |
Sumario: | BACKGROUND: Allocation of scarce organs for transplantation is ethically challenging. Artificial intelligence (AI) has been proposed to assist in liver allocation, however the ethics of this remains unexplored and the view of the public unknown. The aim of this paper was to assess public attitudes on whether AI should be used in liver allocation and how it should be implemented. METHODS: We first introduce some potential ethical issues concerning AI in liver allocation, before analysing a pilot survey including online responses from 172 UK laypeople, recruited through Prolific Academic. FINDINGS: Most participants found AI in liver allocation acceptable (69.2%) and would not be less likely to donate their organs if AI was used in allocation (72.7%). Respondents thought AI was more likely to be consistent and less biased compared to humans, although were concerned about the “dehumanisation of healthcare” and whether AI could consider important nuances in allocation decisions. Participants valued accuracy, impartiality, and consistency in a decision-maker, more than interpretability and empathy. Respondents were split on whether AI should be trained on previous decisions or programmed with specific objectives. Whether allocation decisions were made by transplant committee or AI, participants valued consideration of urgency, survival likelihood, life years gained, age, future medication compliance, quality of life, future alcohol use and past alcohol use. On the other hand, the majority thought the following factors were not relevant to prioritisation: past crime, future crime, future societal contribution, social disadvantage, and gender. CONCLUSIONS: There are good reasons to use AI in liver allocation, and our sample of participants appeared to support its use. If confirmed, this support would give democratic legitimacy to the use of AI in this context and reduce the risk that donation rates could be affected negatively. Our findings on specific ethical concerns also identify potential expectations and reservations laypeople have regarding AI in this area, which can inform how AI in liver allocation could be best implemented. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12910-023-00983-0. |
---|