Cargando…
Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683265/ https://www.ncbi.nlm.nih.gov/pubmed/38012687 http://dx.doi.org/10.1186/s13046-023-02883-y |
_version_ | 1785151156522057728 |
---|---|
author | Zheng, Quan Tang, Jiajia Aicher, Alexandra Bou Kheir, Tony Sabanovic, Berina Ananthanarayanan, Preeta Reina, Chiara Chen, Minchun Gu, Jian-Min He, Bin Alcala, Sonia Behrens, Diana Lawlo, Rita T. Scarpa, Aldo Hidalgo, Manuel Sainz, Bruno Sancho, Patricia Heeschen, Christopher |
author_facet | Zheng, Quan Tang, Jiajia Aicher, Alexandra Bou Kheir, Tony Sabanovic, Berina Ananthanarayanan, Preeta Reina, Chiara Chen, Minchun Gu, Jian-Min He, Bin Alcala, Sonia Behrens, Diana Lawlo, Rita T. Scarpa, Aldo Hidalgo, Manuel Sainz, Bruno Sancho, Patricia Heeschen, Christopher |
author_sort | Zheng, Quan |
collection | PubMed |
description | BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS: We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS: Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS: The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. GRAPHICAL ABSTRACT: A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com). [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-023-02883-y. |
format | Online Article Text |
id | pubmed-10683265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-106832652023-11-30 Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity Zheng, Quan Tang, Jiajia Aicher, Alexandra Bou Kheir, Tony Sabanovic, Berina Ananthanarayanan, Preeta Reina, Chiara Chen, Minchun Gu, Jian-Min He, Bin Alcala, Sonia Behrens, Diana Lawlo, Rita T. Scarpa, Aldo Hidalgo, Manuel Sainz, Bruno Sancho, Patricia Heeschen, Christopher J Exp Clin Cancer Res Research BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS: We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS: Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS: The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. GRAPHICAL ABSTRACT: A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com). [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-023-02883-y. BioMed Central 2023-11-28 /pmc/articles/PMC10683265/ /pubmed/38012687 http://dx.doi.org/10.1186/s13046-023-02883-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Zheng, Quan Tang, Jiajia Aicher, Alexandra Bou Kheir, Tony Sabanovic, Berina Ananthanarayanan, Preeta Reina, Chiara Chen, Minchun Gu, Jian-Min He, Bin Alcala, Sonia Behrens, Diana Lawlo, Rita T. Scarpa, Aldo Hidalgo, Manuel Sainz, Bruno Sancho, Patricia Heeschen, Christopher Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity |
title | Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity |
title_full | Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity |
title_fullStr | Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity |
title_full_unstemmed | Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity |
title_short | Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity |
title_sort | inhibiting nr5a2 targets stemness in pancreatic cancer by disrupting sox2/myc signaling and restoring chemosensitivity |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683265/ https://www.ncbi.nlm.nih.gov/pubmed/38012687 http://dx.doi.org/10.1186/s13046-023-02883-y |
work_keys_str_mv | AT zhengquan inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT tangjiajia inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT aicheralexandra inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT boukheirtony inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT sabanovicberina inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT ananthanarayananpreeta inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT reinachiara inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT chenminchun inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT gujianmin inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT hebin inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT alcalasonia inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT behrensdiana inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT lawloritat inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT scarpaaldo inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT hidalgomanuel inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT sainzbruno inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT sanchopatricia inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity AT heeschenchristopher inhibitingnr5a2targetsstemnessinpancreaticcancerbydisruptingsox2mycsignalingandrestoringchemosensitivity |