Cargando…
Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph
Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this wo...
Autores principales: | Rabby, Gollam, D’Souza, Jennifer, Oelen, Allard, Dvorackova, Lucie, Svátek, Vojtěch, Auer, Sören |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683290/ https://www.ncbi.nlm.nih.gov/pubmed/38017587 http://dx.doi.org/10.1186/s13326-023-00298-4 |
Ejemplares similares
-
Multi-class classification of COVID-19 documents using machine learning algorithms
por: Rabby, Gollam, et al.
Publicado: (2022) -
A Scholarly Knowledge Graph-Powered Dashboard: Implementation and User Evaluation
por: Lezhnina, Olga, et al.
Publicado: (2022) -
Scholarly knowledge graphs through structuring scholarly communication: a review
por: Verma, Shilpa, et al.
Publicado: (2022) -
Why was this cited? Explainable machine learning applied to COVID-19 research literature
por: Beranová, Lucie, et al.
Publicado: (2022) -
Domain-Independent Extraction of Scientific Concepts from Research Articles
por: Brack, Arthur, et al.
Publicado: (2020)