Cargando…
NMR shift prediction from small data quantities
Prediction of chemical shift in NMR using machine learning methods is typically done with the maximum amount of data available to achieve the best results. In some cases, such large amounts of data are not available, e.g. for heteronuclei. We demonstrate a novel machine learning model that is able t...
Autores principales: | Rull, Herman, Fischer, Markus, Kuhn, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683292/ https://www.ncbi.nlm.nih.gov/pubmed/38012793 http://dx.doi.org/10.1186/s13321-023-00785-x |
Ejemplares similares
-
From chemical shift data through prediction to assignment and NMR LIMS - multiple functionalities of nmrshiftdb2
por: Kuhn, Stefan, et al.
Publicado: (2012) -
NightShift: NMR shift inference by general hybrid model training - a framework for NMR chemical shift prediction
por: Dehof, Anna Katharina, et al.
Publicado: (2013) -
NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data
por: Mao, Wusong, et al.
Publicado: (2013) -
Rapid prediction of NMR spectral properties with quantified uncertainty
por: Jonas, Eric, et al.
Publicado: (2019) -
An automated framework for NMR chemical shift calculations of small organic molecules
por: Yesiltepe, Yasemin, et al.
Publicado: (2018)