Cargando…
Logistic regression vs. predictive mean matching for imputing binary covariates
Multivariate imputation using chained equations (MICE) is a popular algorithm for imputing missing data that entails specifying multivariate models through conditional distributions. For imputing missing continuous variables, two common imputation methods are the use of parametric imputation using a...
Autores principales: | Austin, Peter C, van Buuren, Stef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683343/ https://www.ncbi.nlm.nih.gov/pubmed/37750213 http://dx.doi.org/10.1177/09622802231198795 |
Ejemplares similares
-
The effect of high prevalence of missing data on estimation of the coefficients of a logistic regression model when using multiple imputation
por: Austin, Peter C., et al.
Publicado: (2022) -
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
por: Pham, Tra My, et al.
Publicado: (2018) -
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
por: Eekhout, Iris, et al.
Publicado: (2017) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Primer on binary logistic regression
por: Harris, Jenine K
Publicado: (2021)