Cargando…
Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI
Cell therapy is an integral modality of regenerative medicine. Macrophages are known for their sensitivity to activation stimuli and capability to recruit other immune cells to the sites of injury and healing. In addition, the route of administration can impact engraftment and efficacy of cell thera...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683405/ https://www.ncbi.nlm.nih.gov/pubmed/38009543 http://dx.doi.org/10.1177/09636897231212780 |
_version_ | 1785151188892647424 |
---|---|
author | Friberger, Ida Gontu, Vamsi Harris, Robert A. Tran, Thuy A. Lundberg, Johan Holmin, Staffan |
author_facet | Friberger, Ida Gontu, Vamsi Harris, Robert A. Tran, Thuy A. Lundberg, Johan Holmin, Staffan |
author_sort | Friberger, Ida |
collection | PubMed |
description | Cell therapy is an integral modality of regenerative medicine. Macrophages are known for their sensitivity to activation stimuli and capability to recruit other immune cells to the sites of injury and healing. In addition, the route of administration can impact engraftment and efficacy of cell therapy, and modern neuro-interventional techniques provide the possibility for selective intra-arterial (IA) delivery to the central nervous system (CNS) with very low risk. The effects of radiolabelling and catheter transport on differentially activated macrophages were evaluated. Furthermore, the safety of selective IA administration of these macrophages to the rabbit brain was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) and ultra-high-field (9.4 T) magnetic resonance imaging (MRI). Cells were successfully labeled with ((111)In)In-(oxinate)(3) and passed through a microcatheter with preserved phenotype. No cells were retained in the healthy rabbit brain after IA administration, and no adverse events could be observed either 1 h (n = 6) or 24 h (n = 2) after cell administration. The procedure affected both lipopolysaccharide/gamma interferon (LPS/IFNγ) activated cells and interleukin 4 (IL4), interleukin 10 (IL10)/transforming growth factor beta 1 (TGFβ1) activated cells to some degree. The LPS/IFNγ activated cells had a significant increase in their phagocytotic function. Overall, the major impact on the cell phenotypes was due to the radiolabeling and not passage through the catheter. Unstimulated cells were substantially affected by both radiolabeling and catheter administration and are hence not suited for this procedure, while both activated macrophages retained their initial phenotypes. In conclusion, activated macrophages are suitable candidates for targeted IA administration without adverse effects on normal, healthy brain parenchyma. |
format | Online Article Text |
id | pubmed-10683405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-106834052023-11-30 Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI Friberger, Ida Gontu, Vamsi Harris, Robert A. Tran, Thuy A. Lundberg, Johan Holmin, Staffan Cell Transplant Original Article Cell therapy is an integral modality of regenerative medicine. Macrophages are known for their sensitivity to activation stimuli and capability to recruit other immune cells to the sites of injury and healing. In addition, the route of administration can impact engraftment and efficacy of cell therapy, and modern neuro-interventional techniques provide the possibility for selective intra-arterial (IA) delivery to the central nervous system (CNS) with very low risk. The effects of radiolabelling and catheter transport on differentially activated macrophages were evaluated. Furthermore, the safety of selective IA administration of these macrophages to the rabbit brain was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) and ultra-high-field (9.4 T) magnetic resonance imaging (MRI). Cells were successfully labeled with ((111)In)In-(oxinate)(3) and passed through a microcatheter with preserved phenotype. No cells were retained in the healthy rabbit brain after IA administration, and no adverse events could be observed either 1 h (n = 6) or 24 h (n = 2) after cell administration. The procedure affected both lipopolysaccharide/gamma interferon (LPS/IFNγ) activated cells and interleukin 4 (IL4), interleukin 10 (IL10)/transforming growth factor beta 1 (TGFβ1) activated cells to some degree. The LPS/IFNγ activated cells had a significant increase in their phagocytotic function. Overall, the major impact on the cell phenotypes was due to the radiolabeling and not passage through the catheter. Unstimulated cells were substantially affected by both radiolabeling and catheter administration and are hence not suited for this procedure, while both activated macrophages retained their initial phenotypes. In conclusion, activated macrophages are suitable candidates for targeted IA administration without adverse effects on normal, healthy brain parenchyma. SAGE Publications 2023-11-27 /pmc/articles/PMC10683405/ /pubmed/38009543 http://dx.doi.org/10.1177/09636897231212780 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Article Friberger, Ida Gontu, Vamsi Harris, Robert A. Tran, Thuy A. Lundberg, Johan Holmin, Staffan Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI |
title | Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI |
title_full | Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI |
title_fullStr | Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI |
title_full_unstemmed | Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI |
title_short | Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI |
title_sort | phenotyping of macrophages after radiolabeling and safety of intra-arterial transplantation assessed by spect/ct and mri |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683405/ https://www.ncbi.nlm.nih.gov/pubmed/38009543 http://dx.doi.org/10.1177/09636897231212780 |
work_keys_str_mv | AT fribergerida phenotypingofmacrophagesafterradiolabelingandsafetyofintraarterialtransplantationassessedbyspectctandmri AT gontuvamsi phenotypingofmacrophagesafterradiolabelingandsafetyofintraarterialtransplantationassessedbyspectctandmri AT harrisroberta phenotypingofmacrophagesafterradiolabelingandsafetyofintraarterialtransplantationassessedbyspectctandmri AT tranthuya phenotypingofmacrophagesafterradiolabelingandsafetyofintraarterialtransplantationassessedbyspectctandmri AT lundbergjohan phenotypingofmacrophagesafterradiolabelingandsafetyofintraarterialtransplantationassessedbyspectctandmri AT holminstaffan phenotypingofmacrophagesafterradiolabelingandsafetyofintraarterialtransplantationassessedbyspectctandmri |