Cargando…

KIFC1 promotes proliferation and pseudo-bipolar division of ESCC through the transportation of Aurora B kinase

Esophageal squamous cell carcinoma (ESCC) accounts for over 90% of total in China, and the five-year survival rate for patients is less than 30%. Accordingly, the identification of novel, effective early diagnosis markers and therapeutic targets for ESCC is of paramount importance. KIFC1 has been id...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Bin, Wei, Lingyu, Wang, Jia, Li, Yanyan, Huo, Jing, Wang, Jinsheng, Wang, Pu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683620/
https://www.ncbi.nlm.nih.gov/pubmed/37955677
http://dx.doi.org/10.18632/aging.205203
Descripción
Sumario:Esophageal squamous cell carcinoma (ESCC) accounts for over 90% of total in China, and the five-year survival rate for patients is less than 30%. Accordingly, the identification of novel, effective early diagnosis markers and therapeutic targets for ESCC is of paramount importance. KIFC1 has been identified as highly expressed in several types of cancer, although its prognostic value is inconsistent, and no research has been conducted specifically on its effect on ESCC. To investigate the expression and function of KIFC1 in ESCC, we conducted immunohistochemical staining on 30 pairs of para-carcinoma tissue and cancerous tissues, revealing a significant increase in KIFC1 expression in ESCC tissues. Using siRNA to knock down KIFC1 significantly reduced the proliferation of EC109 ESCC cells both in vitro and in vivo. Bioinformatics analysis revealed a highly significant positive correlation between KIFC1 overexpression and signaling pathways associated with tumor proliferation pathways. In EC109 cells, overexpression of KIFC1 significantly increased the rate of centrosome amplification and the likelihood of pseudo-bipolar division. Furthermore, the expression of KIFC1 and the rate of centrosome amplification in ESCC tissues were also positively correlated. In order to explore the underline molecular mechanisms, we identified, through proteomics, that KIFC1 binds to the protein Aurora B. The knockdown of KIFC1 significantly reduced the distribution of Aurora B on the metaphase plate and substantially inhibited the phosphorylation of its classical substrate, Histone H3. In conclusion, these findings indicate the potential utility of KIFC1 as both a tumor marker and a promising target for therapeutic interventions.