Cargando…
The Potential of a CT-Based Machine Learning Radiomics Analysis to Differentiate Brucella and Pyogenic Spondylitis
BACKGROUND: Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are common spinal infections with similar manifestations, making their differentiation challenging. This study aimed to explore the potential of CT-based radiomics features combined with machine learning algorithms to differentiate...
Autores principales: | Yasin, Parhat, Mardan, Muradil, Abliz, Dilxat, Xu, Tao, Keyoumu, Nuerbiyan, Aimaiti, Abasi, Cai, Xiaoyu, Sheng, Weibin, Mamat, Mardan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683663/ https://www.ncbi.nlm.nih.gov/pubmed/38034044 http://dx.doi.org/10.2147/JIR.S429593 |
Ejemplares similares
-
Development and validation of a diagnostic model for differentiating tuberculous spondylitis from brucellar spondylitis using machine learning: A retrospective cohort study
por: Yasin, Parhat, et al.
Publicado: (2023) -
Development and validation of a novel nomogram to predict the risk of the prolonged postoperative length of stay for lumbar spinal stenosis patients
por: Yasin, Parhat, et al.
Publicado: (2023) -
One-stage posterior surgery combined with anti-Brucella therapy in the management of lumbosacral brucellosis spondylitis: a retrospective study
por: Luan, Haopeng, et al.
Publicado: (2022) -
MRI radiomics-based evaluation of tuberculous and brucella spondylitis
por: Wang, Wenhui, et al.
Publicado: (2023) -
A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
por: Wu, Shaofeng, et al.
Publicado: (2022)