Cargando…
Longitudinal analysis of regional cerebellum volumes during normal aging
Some cross-sectional studies suggest reduced cerebellar volumes with aging, but there have been few longitudinal studies of age changes in cerebellar subregions in cognitively healthy older adults. In this work, 2,023 magnetic resonance (MR) images of 822 cognitively normal participants from the Bal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683793/ https://www.ncbi.nlm.nih.gov/pubmed/32592850 http://dx.doi.org/10.1016/j.neuroimage.2020.117062 |
Sumario: | Some cross-sectional studies suggest reduced cerebellar volumes with aging, but there have been few longitudinal studies of age changes in cerebellar subregions in cognitively healthy older adults. In this work, 2,023 magnetic resonance (MR) images of 822 cognitively normal participants from the Baltimore Longitudinal Study of Aging (BLSA) were analyzed. Participants ranged in age from 50 to 95 years (mean 70.7 years) at the baseline assessment. Follow-up intervals were 1–9 years (mean 3.7 years) for participants with two or more visits. We used a recently developed cerebellum parcellation algorithm based on convolutional neural networks to divide the cerebellum into 28 subregions. Linear mixed effects models were applied to the volume of each cerebellar subregion to investigate cross-sectional and longitudinal age effects, as well as effects of sex and their interactions, after adjusting for intracranial volume. Our findings suggest spatially varying atrophy patterns across the cerebellum with respect to age and sex both cross-sectionally and longitudinally. |
---|