Cargando…
Discriminant analysis as a tool to classify farm hay in dairy farms
Hay is one of the primary constituents of ruminant feed, and rapid classification systems of nutritional value are essential. A reliable approach to evaluating hay quality is a combination of visual combined inspection by NIRS analysis. The analysis was carried out on 1,639 samples of hay collected...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684012/ https://www.ncbi.nlm.nih.gov/pubmed/38015887 http://dx.doi.org/10.1371/journal.pone.0294468 |
_version_ | 1785151308350619648 |
---|---|
author | Dal Prà, Aldo Bozzi, Riccardo Parrini, Silvia Immovilli, Alessandra Davolio, Roberto Ruozzi, Fabrizio Fabbri, Maria Chiara |
author_facet | Dal Prà, Aldo Bozzi, Riccardo Parrini, Silvia Immovilli, Alessandra Davolio, Roberto Ruozzi, Fabrizio Fabbri, Maria Chiara |
author_sort | Dal Prà, Aldo |
collection | PubMed |
description | Hay is one of the primary constituents of ruminant feed, and rapid classification systems of nutritional value are essential. A reliable approach to evaluating hay quality is a combination of visual combined inspection by NIRS analysis. The analysis was carried out on 1,639 samples of hay collected from 2016 to 2021 in northern Italy. Discriminant analysis (DAPC) on five hay types (FOM, forage mixtures; APG, first alfalfa cutting with prevalence of graminaceous >50%; PRA, prevailing alfalfa >50%; PUA, purity alfalfa >95%; and PEM, permanent meadows) was performed by ex-ante visual inspection categorization and NIRS analysis. This study aimed to provide a complementary method to differentiate hay types and classify unknown samples. Two scenarios were used: i) all data were used for model training, and the discriminant functions were extracted based on all samples; ii) the assignment of each group was assessed without samples belonging to the training set group. DAPC model resulted in an overall assignment success rate of 66%; precisely, the success was 84, 79, 69, 37, and 27% for PUA, FOM, PRA, APG, and PEM, respectively. In the second scenario, three groups showed percentages of posterior assignment probability higher than 70% to only one group: PUA with PRA (~ 99%), PRA with PUA (~71%), and PEM with FOM (~75%). Discriminant analysis can be successfully used to differentiate hay types and could also be used to assess factors related to hay quality in addition to NIRS analysis. |
format | Online Article Text |
id | pubmed-10684012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106840122023-11-30 Discriminant analysis as a tool to classify farm hay in dairy farms Dal Prà, Aldo Bozzi, Riccardo Parrini, Silvia Immovilli, Alessandra Davolio, Roberto Ruozzi, Fabrizio Fabbri, Maria Chiara PLoS One Research Article Hay is one of the primary constituents of ruminant feed, and rapid classification systems of nutritional value are essential. A reliable approach to evaluating hay quality is a combination of visual combined inspection by NIRS analysis. The analysis was carried out on 1,639 samples of hay collected from 2016 to 2021 in northern Italy. Discriminant analysis (DAPC) on five hay types (FOM, forage mixtures; APG, first alfalfa cutting with prevalence of graminaceous >50%; PRA, prevailing alfalfa >50%; PUA, purity alfalfa >95%; and PEM, permanent meadows) was performed by ex-ante visual inspection categorization and NIRS analysis. This study aimed to provide a complementary method to differentiate hay types and classify unknown samples. Two scenarios were used: i) all data were used for model training, and the discriminant functions were extracted based on all samples; ii) the assignment of each group was assessed without samples belonging to the training set group. DAPC model resulted in an overall assignment success rate of 66%; precisely, the success was 84, 79, 69, 37, and 27% for PUA, FOM, PRA, APG, and PEM, respectively. In the second scenario, three groups showed percentages of posterior assignment probability higher than 70% to only one group: PUA with PRA (~ 99%), PRA with PUA (~71%), and PEM with FOM (~75%). Discriminant analysis can be successfully used to differentiate hay types and could also be used to assess factors related to hay quality in addition to NIRS analysis. Public Library of Science 2023-11-28 /pmc/articles/PMC10684012/ /pubmed/38015887 http://dx.doi.org/10.1371/journal.pone.0294468 Text en © 2023 Dal Prà et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dal Prà, Aldo Bozzi, Riccardo Parrini, Silvia Immovilli, Alessandra Davolio, Roberto Ruozzi, Fabrizio Fabbri, Maria Chiara Discriminant analysis as a tool to classify farm hay in dairy farms |
title | Discriminant analysis as a tool to classify farm hay in dairy farms |
title_full | Discriminant analysis as a tool to classify farm hay in dairy farms |
title_fullStr | Discriminant analysis as a tool to classify farm hay in dairy farms |
title_full_unstemmed | Discriminant analysis as a tool to classify farm hay in dairy farms |
title_short | Discriminant analysis as a tool to classify farm hay in dairy farms |
title_sort | discriminant analysis as a tool to classify farm hay in dairy farms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684012/ https://www.ncbi.nlm.nih.gov/pubmed/38015887 http://dx.doi.org/10.1371/journal.pone.0294468 |
work_keys_str_mv | AT dalpraaldo discriminantanalysisasatooltoclassifyfarmhayindairyfarms AT bozziriccardo discriminantanalysisasatooltoclassifyfarmhayindairyfarms AT parrinisilvia discriminantanalysisasatooltoclassifyfarmhayindairyfarms AT immovillialessandra discriminantanalysisasatooltoclassifyfarmhayindairyfarms AT davolioroberto discriminantanalysisasatooltoclassifyfarmhayindairyfarms AT ruozzifabrizio discriminantanalysisasatooltoclassifyfarmhayindairyfarms AT fabbrimariachiara discriminantanalysisasatooltoclassifyfarmhayindairyfarms |