Cargando…
Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula
BACKGROUND: Colorectal carcinogenesis and progression are related to the gut microbiota and the tumor immune microenvironment. Our previous clinical trial demonstrated that berberine (BBR) hydrochloride might reduce the recurrence and canceration of colorectal adenoma (CRA). The present study aimed...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684188/ https://www.ncbi.nlm.nih.gov/pubmed/37553874 http://dx.doi.org/10.1097/CM9.0000000000002752 |
_version_ | 1785151347993083904 |
---|---|
author | Qian, Yun Kang, Ziran Zhao, Licong Chen, Huimin Zhou, Chengbei Gao, Qinyan Wang, Zheng Liu, Qiang Cui, Yun Li, Xiaobo Chen, Yingxuan Zou, Tianhui Fang, Jingyuan |
author_facet | Qian, Yun Kang, Ziran Zhao, Licong Chen, Huimin Zhou, Chengbei Gao, Qinyan Wang, Zheng Liu, Qiang Cui, Yun Li, Xiaobo Chen, Yingxuan Zou, Tianhui Fang, Jingyuan |
author_sort | Qian, Yun |
collection | PubMed |
description | BACKGROUND: Colorectal carcinogenesis and progression are related to the gut microbiota and the tumor immune microenvironment. Our previous clinical trial demonstrated that berberine (BBR) hydrochloride might reduce the recurrence and canceration of colorectal adenoma (CRA). The present study aimed to further explore the mechanism of BBR in preventing colorectal cancer (CRC). METHODS: We performed metagenomics sequencing on fecal specimens obtained from the BBR intervention trial, and the differential bacteria before and after medication were validated using quantitative polymerase chain reaction. We further performed Apc(Min/+) animal intervention tests, RNA sequencing, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assays. RESULTS: The abundance of fecal Veillonella parvula (V. parvula) decreased significantly after BBR administration (P = 0.0016) and increased through the development from CRA to CRC. Patients with CRC with a higher V. parvula abundance had worse tumor staging and a higher lymph node metastasis rate. The intestinal immune pathway of Immunoglobulin A production was activated, and the expression of TNFSF13B (Tumor necrosis factor superfamily 13b, encoding B lymphocyte stimulator [BLyS]), the representative gene of this pathway, and the genes encoding its receptors (interleukin-10 and transforming growth factor beta) were significantly upregulated. Animal experiments revealed that V. parvula promoted colorectal carcinogenesis and increased BLyS levels, while BBR reversed this effect. CONCLUSION: BBR might inhibit V. parvula and further weaken the immunomodulatory effect of B cells induced by V. parvula, thereby blocking the development of colorectal tumors. TRIAL REGISTRAION: ClinicalTrials.gov, No. NCT02226185. |
format | Online Article Text |
id | pubmed-10684188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-106841882023-11-30 Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula Qian, Yun Kang, Ziran Zhao, Licong Chen, Huimin Zhou, Chengbei Gao, Qinyan Wang, Zheng Liu, Qiang Cui, Yun Li, Xiaobo Chen, Yingxuan Zou, Tianhui Fang, Jingyuan Chin Med J (Engl) Original Article BACKGROUND: Colorectal carcinogenesis and progression are related to the gut microbiota and the tumor immune microenvironment. Our previous clinical trial demonstrated that berberine (BBR) hydrochloride might reduce the recurrence and canceration of colorectal adenoma (CRA). The present study aimed to further explore the mechanism of BBR in preventing colorectal cancer (CRC). METHODS: We performed metagenomics sequencing on fecal specimens obtained from the BBR intervention trial, and the differential bacteria before and after medication were validated using quantitative polymerase chain reaction. We further performed Apc(Min/+) animal intervention tests, RNA sequencing, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assays. RESULTS: The abundance of fecal Veillonella parvula (V. parvula) decreased significantly after BBR administration (P = 0.0016) and increased through the development from CRA to CRC. Patients with CRC with a higher V. parvula abundance had worse tumor staging and a higher lymph node metastasis rate. The intestinal immune pathway of Immunoglobulin A production was activated, and the expression of TNFSF13B (Tumor necrosis factor superfamily 13b, encoding B lymphocyte stimulator [BLyS]), the representative gene of this pathway, and the genes encoding its receptors (interleukin-10 and transforming growth factor beta) were significantly upregulated. Animal experiments revealed that V. parvula promoted colorectal carcinogenesis and increased BLyS levels, while BBR reversed this effect. CONCLUSION: BBR might inhibit V. parvula and further weaken the immunomodulatory effect of B cells induced by V. parvula, thereby blocking the development of colorectal tumors. TRIAL REGISTRAION: ClinicalTrials.gov, No. NCT02226185. Lippincott Williams & Wilkins 2023-08-09 2023-11-20 /pmc/articles/PMC10684188/ /pubmed/37553874 http://dx.doi.org/10.1097/CM9.0000000000002752 Text en Copyright © 2023 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Original Article Qian, Yun Kang, Ziran Zhao, Licong Chen, Huimin Zhou, Chengbei Gao, Qinyan Wang, Zheng Liu, Qiang Cui, Yun Li, Xiaobo Chen, Yingxuan Zou, Tianhui Fang, Jingyuan Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula |
title | Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula |
title_full | Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula |
title_fullStr | Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula |
title_full_unstemmed | Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula |
title_short | Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula |
title_sort | berberine might block colorectal carcinogenesis by inhibiting the regulation of b-cell function by veillonella parvula |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684188/ https://www.ncbi.nlm.nih.gov/pubmed/37553874 http://dx.doi.org/10.1097/CM9.0000000000002752 |
work_keys_str_mv | AT qianyun berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT kangziran berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT zhaolicong berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT chenhuimin berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT zhouchengbei berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT gaoqinyan berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT wangzheng berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT liuqiang berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT cuiyun berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT lixiaobo berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT chenyingxuan berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT zoutianhui berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula AT fangjingyuan berberinemightblockcolorectalcarcinogenesisbyinhibitingtheregulationofbcellfunctionbyveillonellaparvula |