Cargando…

CSF 14-3-3β is associated with progressive cognitive decline in Alzheimer’s disease

Alzheimer’s disease is a neurodegenerative disorder characterized pathologically by amyloid-beta plaques, tau tangles and neuronal loss. In clinical practice, the 14-3-3 isoform beta (β) is a biomarker that aids in the diagnosis of sporadic Creutzfeldt–Jakob disease. Recently, a proteomics study fou...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiang, Qiang, Skudder-Hill, Loren, Toyota, Tomoko, Huang, Zhe, Wei, Wenshi, Adachi, Hiroaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684297/
https://www.ncbi.nlm.nih.gov/pubmed/38035365
http://dx.doi.org/10.1093/braincomms/fcad312
Descripción
Sumario:Alzheimer’s disease is a neurodegenerative disorder characterized pathologically by amyloid-beta plaques, tau tangles and neuronal loss. In clinical practice, the 14-3-3 isoform beta (β) is a biomarker that aids in the diagnosis of sporadic Creutzfeldt–Jakob disease. Recently, a proteomics study found increased CSF 14-3-3β levels in Alzheimer’s disease patients, suggesting a potential link between CSF 14-3-3β and Alzheimer’s disease. Our present study aimed to further investigate the role of CSF 14-3-3β in Alzheimer’s disease by analysing the data of 719 participants with available CSF 14-3-3β measurements from the Alzheimer’s Disease Neuroimaging Initiative. Higher CSF 14-3-3β levels were observed in the mild cognitive impairment group compared to the cognitively normal group, with the highest CSF 14-3-3β levels in the Alzheimer’s disease dementia group. This study also found significant associations between CSF 14-3-3β levels and CSF biomarkers of p-tau, t-tau, pTau/Aβ42 ratios and GAP-43, as well as other Alzheimer’s disease biomarkers such as Aβ-PET. An early increase in CSF 14-3-3β levels was observed prior to Aβ-PET–positive status, and CSF 14-3-3β levels continued to rise after crossing the Aβ-PET positivity threshold before reaching a plateau. The diagnostic accuracy of CSF 14-3-3β (area under the receiver operating characteristic curve = 0.819) was moderate compared to other established Alzheimer’s disease biomarkers in distinguishing cognitively normal Aβ pathology–negative individuals from Alzheimer’s disease Aβ pathology–positive individuals. Higher baseline CSF 14-3-3β levels were associated with accelerated cognitive decline, reduced hippocampus volumes and declining fluorodeoxyglucose-PET values over a 4-year follow-up period. Patients with mild cognitive impairment and high CSF 14-3-3β levels at baseline had a significantly increased risk [hazard ratio = 2.894 (1.599–5.238), P < 0.001] of progression to Alzheimer’s disease dementia during follow-up. These findings indicate that CSF 14-3-3β may be a potential biomarker for Alzheimer’s disease and could provide a more comprehensive understanding of the underlying pathological changes of Alzheimer’s disease, as well as aid in the diagnosis and monitoring of disease progression.